共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe SPICE: Simulation Package for Including Flavor in Collider Events. SPICE takes as input two ingredients: a standard flavor-conserving supersymmetric spectrum and a set of flavor-violating slepton mass parameters, both of which are specified at some high “mediation” scale. SPICE then combines these two ingredients to form a flavor-violating model, determines the resulting low-energy spectrum and branching ratios, and outputs HERWIG and SUSY Les Houches files, which may be used to generate collider events. The flavor-conserving model may be any of the standard supersymmetric models, including minimal supergravity, minimal gauge-mediated supersymmetry breaking, and anomaly-mediated supersymmetry breaking supplemented by a universal scalar mass. The flavor-violating contributions may be specified in a number of ways, from specifying charges of fields under horizontal symmetries to completely specifying all flavor-violating parameters. SPICE is fully documented and publicly available, and is intended to be a user-friendly aid in the study of flavor at the Large Hadron Collider and other future colliders.
Program summary
Program title: SPICECatalogue identifier: AEFL_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFL_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8153No. of bytes in distributed program, including test data, etc.: 67 291Distribution format: tar.gzProgramming language: C++Computer: Personal computerOperating system: Tested on Scientific Linux 4.xClassification: 11.1External routines: SOFTSUSY [1,2] and SUSYHIT [3]Nature of problem: Simulation programs are required to compare theoretical models in particle physics with present and future data at particle colliders. SPICE determines the masses and decay branching ratios of supersymmetric particles in theories with lepton flavor violation. The inputs are the parameters of any of several standard flavor-conserving supersymmetric models, supplemented by flavor-violating parameters determined, for example, by horizontal flavor symmetries. The output are files that may be used for detailed simulation of supersymmetric events at particle colliders.Solution method: Simpson's rule integrator, basic algebraic computation.Additional comments: SPICE interfaces with SOFTSUSY and SUSYHIT to produce the low energy sparticle spectrum. Flavor mixing for sleptons and sneutrinos is fully implemented; flavor mixing for squarks is not included.Running time: <1 minute. Running time is dominated by calculating the possible and relevant three-body flavor-violating decays of sleptons, which is usually 10-15 seconds per slepton.References:- [1]
- B.C. Allanach, Comput. Phys. Commun. 143 (2002) 305, arXiv:hep-ph/0104145.
- [2]
- B.C. Allanach, M.A. Bernhardt, arXiv:0903.1805 [hep-ph].
- [3]
- A. Djouadi, M.M. Muhlleitner, M. Spira, Acta Phys. Pol. B 38 (2007) 635, arXiv:hep-ph/0609292.
2.
We present the Monte Carlo generator RacoonWW that computes cross sections to all processes e+e−→4f and e+e−→4fγ and calculates the complete electroweak radiative corrections to e+e−→WW→4f in the electroweak Standard Model in double-pole approximation. The calculation of the tree-level processes e+e−→4f and e+e−→4fγ is based on the full matrix elements for massless (polarized) fermions. When calculating radiative corrections to e+e−→WW→4f, the complete virtual doubly-resonant electroweak corrections are included, i.e. the factorizable and non-factorizable virtual corrections in double-pole approximation, and the real corrections are based on the full matrix elements for e+e−→4fγ. The matching of soft and collinear singularities between virtual and real corrections is done alternatively in two different ways, namely by using a subtraction method or by applying phase-space slicing. Higher-order initial-state photon radiation and naive QCD corrections are taken into account. RacoonWW also provides anomalous triple gauge-boson couplings for all processes e+e−→4f and anomalous quartic gauge-boson couplings for all processes e+e−→4fγ. 相似文献
3.
We present the Fortran code SuSpect version 2.3, which calculates the Supersymmetric and Higgs particle spectrum in the Minimal Supersymmetric Standard Model (MSSM). The calculation can be performed in constrained models with universal boundary conditions at high scales such as the gravity (mSUGRA), anomaly (AMSB) or gauge (GMSB) mediated supersymmetry breaking models, but also in the non-universal MSSM case with R-parity and CP conservation. Care has been taken to treat important features such as the renormalization group evolution of parameters between low and high energy scales, the consistent implementation of radiative electroweak symmetry breaking and the calculation of the physical masses of the Higgs bosons and supersymmetric particles taking into account the dominant radiative corrections. Some checks of important theoretical and experimental features, such as the absence of non-desired minima, large fine-tuning in the electroweak symmetry breaking condition, as well as agreement with precision measurements can be performed. The program is simple to use, self-contained and can easily be linked to other codes; it is rather fast and flexible, thus allowing scans of the parameter space with several possible options and choices for model assumptions and approximations.
Program summary
Title of program:SuSpectCatalogue identifier:ADYR_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYR_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandLicensing provisions:noneProgramming language used:FORTRAN 77Computer:Unix machines, PCNo. of lines in distributed program, including test data, etc.:21 821No. of bytes in distributed program, including test data, etc.:249 657Distribution format:tar.gzOperating system:Unix (or Linux)RAM:approximately 2500 KbytesNumber of processors used:1 processorNature of problem:SuSpect calculates the supersymmetric and Higgs particle spectrum (masses and some other relevant parameters) in the unconstrained Minimal Supersymmetric Standard Model (MSSM), as well as in constrained models (cMSSMs) such as the minimal Supergravity (mSUGRA), the gauge mediated (GMSB) and anomaly mediated (AMSB) Supersymmetry breaking scenarii. The following features and ingredients are included: renormalization group evolution between low and high energy scales, consistent implementation of radiative electroweak symmetry breaking, calculation of the physical particle masses with radiative corrections at the one- and two-loop level.Solution method:The main methods used in the code are: (1) an (adaptative fourth-order) Runge-Kutta type algorithm (following a standard algorithm described in “Numerical Recipes”), used to solve numerically a set of coupled differential equations resulting from the renormalization group equations at the two-loop level of the perturbative expansions; (2) diagonalizations of mass matrices; (3) some mathematical (Spence, etc) functions resulting from the evaluation of one and two-loop integrals using the Feynman graphs techniques for radiative corrections to the particle masses; (4) finally, some fixed-point iterative algorithms to solve non-linear equations for some of the relevant output parameters.Restrictions:(1) The code is limited at the moment to real input parameters. (2) It also does not include flavor non-diagonal terms which are possible in the most general soft supersymmetry breaking Lagrangian. (3) There are some (mild) limitations on the possible range of values of input parameter, i.e. not any arbitrary values of some input parameters are allowed: these limitations are essentially based on physical rather than algorithmic issues, and warning flags and other protections are installed to avoid as much as possible execution failure if unappropriate input values are used.Running time:between 1 and 3 seconds depending on options, with a 1 GHz processor. 相似文献4.
aITALC, a new tool for automating loop calculations in high energy physics, is described. The package creates Fortran code for two-fermion scattering processes automatically, starting from the generation and analysis of the Feynman graphs. We describe the modules of the tool, the intercommunication between them and illustrate its use with three examples.
Program summary
Title of the program:aITALC version 1.2.1 (9 August 2005)Catalogue identifier:ADWOProgram summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWOProgram obtainable from:CPC Program Library, Queen's University of Belfast, N. IrelandComputer:PC i386Operating system:GNU/Linux, tested on different distributions SuSE 8.2 to 9.3, Red Hat 7.2, Debian 3.0, Ubuntu 5.04. Also on SolarisProgramming language used:GNU Make, Diana, Form, Fortran77Additional programs/libraries used:Diana 2.35 (Qgraf 2.0), Form 3.1, LoopTools 2.1 (FF)Memory required to execute with typical data:Up to about 10 MBNo. of processors used:1No. of lines in distributed program, including test data, etc.:40 926No. of bytes in distributed program, including test data, etc.:371 424Distribution format:tar gzip fileHigh-speed storage required:from 1.5 to 30 MB, depending on modules present and unfolding of examplesNature of the physical problem:Calculation of differential cross sections for e+e− annihilation in one-loop approximation.Method of solution:Generation and perturbative analysis of Feynman diagrams with later evaluation of matrix elements and form factors.Restriction of the complexity of the problem:The limit of application is, for the moment, the 2→2 particle reactions in the electro-weak standard model.Typical running time:Few minutes, being highly depending on the complexity of the process and the Fortran compiler. 相似文献5.
Alessandro Ballestrero Giuseppe Bevilacqua Vladimir Kashkan Ezio Maina 《Computer Physics Communications》2009,180(3):401-417
PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and electron-positron colliders at and including possible interferences between the two sets of diagrams. This comprehends all purely electroweak contributions as well as all contributions with one virtual or two external gluons. It can generate unweighted events for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol. It can be used to analyze the physics of boson-boson scattering, Higgs boson production in boson-boson fusion, and three boson production.
Program summary
Program title:PHANTOM (V. 1.0)Catalogue identifier: AECE_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECE_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 175 787No. of bytes in distributed program, including test data, etc.: 965 898Distribution format: tar.gzProgramming language: Fortran 77Computer: Any with a UNIX, LINUX compatible Fortran compilerOperating system: UNIX, LINUXRAM: 500 MBClassification: 11.1External routines: LHAPDF (Les Houches Accord PDF Interface, http://projects.hepforge.org/lhapdf/), CIRCE (beamstrahlung for e+e− ILC collider).Nature of problem: Six fermion final state processes have become important with the increase of collider energies and are essential for the study of top, Higgs and electroweak symmetry breaking physics at high energy colliders. Since thousands of Feynman diagrams contribute in a single process and events corresponding to hundreds of different final states need to be generated, a fast and stable calculation is needed.Solution method:PHANTOM is a tree level Monte Carlo for six parton final states at proton-proton, proton-antiproton and electron-positron colliders. It computes all amplitudes at and including possible interferences between the two sets of diagrams. The matrix elements are computed with the helicity formalism implemented in the program PHACT [1]. The integration makes use of an iterative-adaptive multichannel method which, relying on adaptivity, allows the use of only a few channels per process. Unweighted event generation can be performed for any set of processes and it is interfaced to parton shower and hadronization packages via the latest Les Houches Accord protocol.Restrictions: All Feynman diagrams are computed al LO.Unusual features: Phantom is written in Fortran 77 but it makes use of structures. The g77 compiler cannot compile it as it does not recognize the structures. The Intel, Portland Group, True64 HP Fortran 77 or Fortran 90 compilers have been tested and can be used.Running time: A few hours for a cross section integration of one process at per mille accuracy. One hour for one thousand unweighted events.References:- [1]
- A. Ballestrero, E. Maina, Phys. Lett. B 350 (1995) 225, hep-ph/9403244; A. Ballestrero, PHACT 1.0, Program for helicity amplitudes Calculations with Tau matrices, hep-ph/9911318, in: B.B. Levchenko, V.I. Savrin (Eds.), Proceedings of the 14th International Workshop on High Energy Physics and Quantum Field Theory (QFTHEP 99), SINP MSU, Moscow, p. 303.
6.
7.
A fully numerical method to calculate loop integrals, a numerical contour-integration method, is proposed. Loop integrals can be interpreted as a contour integral in a complex plane for an integrand with multi-poles in the plane. Stable and efficient numerical integrations an along appropriate contour can be performed for scalar and tensor integrals appearing in loop calculations of the standard model. Examples of 3- and 4-point diagrams in 1-loop integrals and 2- and 3-point diagrams in 2-loop integrals with arbitrary masses are shown.Moreover it is shown that numerical evaluations of the Hypergeometric function, which often appears in the loop integrals, can be performed using the numerical contour-integration method. 相似文献
8.
9.
S. Pozzorini 《Computer Physics Communications》2006,175(5):381-387
We present a double precision routine in Fortran for the precise and fast numerical evaluation of the two Master Integrals (MIs) of the equal mass two-loop sunrise graph for arbitrary momentum transfer in d=2 and d=4 dimensions. The routine implements the accelerated power series expansions obtained by solving the corresponding differential equations for the MIs at their singular points. With a maximum of 22 terms for the worst case expansion a relative precision of better than a part in 1015 is achieved for arbitrary real values of the momentum transfer.
Program summary
Title of program:sunemVersion: 1.0Release: 1Catalogue identifier: ADYC_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYC_v1_0Program obtainable from:http://www-ttp.physik.uni-karlsruhe.de/Progdata/Computers: allOperating system: allProgram language used:FORTRAN77No. of lines in distributed program, including test data, etc.:1080No. of bytes in distributed program, including test data, etc.: 11 835Memory required to execute: Size: 1532KNo. of bits in a word: up to 32No. of processors used: 1Distribution format: tar.gzOther programs called: noneExternal files needed: noneNature of the physical problem: Numerical evaluation of the two Master Integrals of the equal mass two-loop sunrise Feynman graph for arbitrary momentum transfer in d=2 and d=4 dimensions.Method of solution: Accelerated power series expansions obtained by solving the differential equations for the MIs at their singular points. With a maximum of 22 terms for the worse case expansion a relative precision of better than a part in 1015 is achieved for arbitrary real values of the momentum transfer.Restrictions on complexity of the problem: Limited to real momentum transfer and equal internal masses.Typical running time: Approximately 1 μs to evaluate the four Master integrals for a fixed momentum transfer value on a Pentium IV/3 GHz Linux PC. 相似文献10.
11.
P. Golonka B. Kersevan T. Pierzcha?a Z. Wa?s M. Worek 《Computer Physics Communications》2006,174(10):818-835
We present the system for maintaining the versions of two packages: the TAUOLA of τ-lepton decay and PHOTOS for radiative corrections in decays. The following features can be chosen in an automatic or semi-automatic way: (1) format of the common block HEPEVT; (2) version of the physics input (for TAUOLA): as published, as initialized by the CLEO collaboration, as initialized by the ALEPH collaboration (it is suggested to use this version only with the help of the collaboration advice), new optional parametrization of matrix elements in 4π decay channels; (3) type of application: stand-alone, universal interface based on the information stored in the HEPEVT common block including longitudinal spin effects in the elementary Z/γ∗→τ+τ− process, extended version of the standard universal interface including full spin effects in the H/A→τ+τ− decay, interface for KKMC Monte Carlo, (4) random number generators; (5) compiler options. The last section of the paper contains documentation of the programs updates introduced over the last two years.
Program summary
Title of program:tauola-photos-F, release IICatalogue identifier:ADXO_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXO_v1_0Programs obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandComputer: PC running GNU/Linux operating systemProgramming languages and tools used:CPP: standard C-language preprocessor, GNU Make builder tool, also FORTRAN compilerNo. of lines in distributed program, including test data, etc.: 194 118No. of bytes in distributed program, including test data, etc.:2 481 234Distribution format: tar.gzCatalogue identifier:ADXO_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXO_v2_0No. of lines in distributed program, including test data, etc.:308 235No. of bytes in distributed program, including test data, etc.:2 988 363Distribution format:tar.gzDoes the new version supersede the previous version:YesNature of the physical problem: The code of Monte Carlo generators often has to be tuned to the needs of large HEP Collaborations and experiments. Usually, these modifications do not introduce important changes in the algorithm, but rather modify the initialization and form of the hadronic current in τ decays. The format of the event record (HEPEVT common block) used to exchange information between building blocks of Monte Carlo systems often needs modification. Thus, there is a need to maintain various, slightly modified versions of the same code. The package presented here allows the production of ready-to-compile versions of TAUOLA [S. Jadach, Z. Wa?s, R. Decker, J.H. Kühn, Comput. Phys. Comm. 76 (1993) 361; A.E. Bondar, et al., Comput. Phys. Comm. 146 (2002) 139] and PHOTOS [E. Barberio, Z. Wa?s, Comput. Phys. Comm. 79 (1994) 291] Monte Carlo generators with appropriate demonstration programs. The new algorithm, universal interface of TAUOLA to work with the HEPEVT common block, is also documented here. Finally, minor technical improvements of TAUOLA and PHOTOS are also listed.Method of solution: The standard UNIX tool: the C-language preprocessor is used to produce a ready-to-distribute version of TAUOLA and PHOTOS code. The final FORTRAN code is produced from the library of ‘pre-code’ that is included in the package.Reasons for new version: The functionality of the version of TAUOLA and PHOTOS changed over the last two years. The changes, and their reasons, are documented in Section 9, and our new papers cited in this section.Additional comments: The updated version includes new features described in Section 9 of the paper. PHOTOS and TAUOLA were first submitted to the library as separate programs. Summary details of these previous programs are obtainable from the CPC Program Library.Typical running time: Depends on the speed of the computer used and the demonstration program chosen. Typically a few seconds. 相似文献12.
Alessandro Cafarella 《Computer Physics Communications》2009,180(10):1941-1955
The updated version of the Helac-Phegas1 event generator is presented. The matrix elements are calculated through Dyson-Schwinger recursive equations using color connection representation. Phase-space generation is based on a multichannel approach, including optimization. Helac-Phegas generates parton level events with all necessary information, in the most recent Les Houches Accord format, for the study of any process within the Standard Model in hadron and lepton colliders.
New version program summary
Program title: HELAC-PHEGASCatalogue identifier: ADMS_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADMS_v2_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 35 986No. of bytes in distributed program, including test data, etc.: 380 214Distribution format: tar.gzProgramming language: FortranComputer: AllOperating system: LinuxClassification: 11.1, 11.2External routines: Optionally Les Houches Accord (LHA) PDF Interface library (http://projects.hepforge.org/lhapdf/)Catalogue identifier of previous version: ADMS_v1_0Journal reference of previous version: Comput. Phys. Comm. 132 (2000) 306Does the new version supersede the previous version?: Yes, partlyNature of problem: One of the most striking features of final states in current and future colliders is the large number of events with several jets. Being able to predict their features is essential. To achieve this, the calculations need to describe as accurately as possible the full matrix elements for the underlying hard processes. Even at leading order, perturbation theory based on Feynman graphs runs into computational problems, since the number of graphs contributing to the amplitude grows as n!.Solution method: Recursive algorithms based on Dyson-Schwinger equations have been developed recently in order to overcome the computational obstacles. The calculation of the amplitude, using Dyson-Schwinger recursive equations, results in a computational cost growing asymptotically as 3n, where n is the number of particles involved in the process. Off-shell subamplitudes are introduced, for which a recursion relation has been obtained allowing to express an n-particle amplitude in terms of subamplitudes, with 1-, 2-, … up to (n−1) particles. The color connection representation is used in order to treat amplitudes involving colored particles. In the present version HELAC-PHEGAS can be used to efficiently obtain helicity amplitudes, total cross sections, parton-level event samples in LHA format, for arbitrary multiparticle processes in the Standard Model in leptonic, and pp collisions.Reasons for new version: Substantial improvements, major functionality upgrade.Summary of revisions: Color connection representation, efficient integration over PDF via the PARNI algorithm, interface to LHAPDF, parton level events generated in the most recent LHA format, k⊥ reweighting for Parton Shower matching, numerical predictions for amplitudes for arbitrary processes for phase-space points provided by the user, new user interface and the possibility to run over computer clusters.Running time: Depending on the process studied. Usually from seconds to hours.References:- [1]
- A. Kanaki, C.G. Papadopoulos, Comput. Phys. Comm. 132 (2000) 306.
- [2]
- C.G. Papadopoulos, Comput. Phys. Comm. 137 (2001) 247.
13.
This paper discusses the concept, application, and usefulness of software design patterns for scientific programming in Fortran 90/95. An example from the discipline of object-oriented design patterns, that of a game based on navigation through a maze, is used to describe how some important patterns can be implemented in Fortran 90/95 and how the progressive introduction of design patterns can usefully restructure Fortran software as it evolves. This example is complemented by a discussion of how design patterns have been used in a real-life simulation of Particle-in-Cell plasma physics. The following patterns are mentioned in this paper: Factory, Strategy, Template, Abstract Factory and Facade.
Program summary
Program title: mazev1, mazev2, mazev3Catalogue identifier: AEAI_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAI_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 1958No. of bytes in distributed program, including test data, etc.: 17 100Distribution format: tar.gzProgramming language: Fortran 95Computer: PC/MacOperating system: Unix/Linux/Mac (FreeBSD)/Windows (Cygwin)RAM: These are interactive programs with small (KB) memory requirementsClassification: 6.5, 20Nature of problem: A sequence of programs which demonstrate the use of object oriented design patterns for the restructuring of Fortran 90/95 software. The programs implement a simple maze game similar to that described in [1].Solution method: Restructuring uses versions of the Template, Strategy and Factory design patterns.Running time: Interactive.References:- [1]
- E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object Oriented Software, Addison-Wesley, 1995, ISBN 0201633612.
14.
15.
David Eriksson 《Computer Physics Communications》2010,181(1):189-255
We describe the public C++ code 2HDMC which can be used to perform calculations in a general, CP-conserving, two-Higgs-doublet model (2HDM). The program features simple conversion between different parametrizations of the 2HDM potential, a flexible Yukawa sector specification with choices of different Z2-symmetries or more general couplings, a decay library including all two-body - and some three-body - decay modes for the Higgs bosons, and the possibility to calculate observables of interest for constraining the 2HDM parameter space, as well as theoretical constraints from positivity and unitarity. The latest version of the 2HDMC code and full documentation is available from: http://www.isv.uu.se/thep/MC/2HDMC.
Program summary
Program title:2HDMCCatalogue identifier: AEFI_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFI_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: GNU GPLNo. of lines in distributed program, including test data, etc.: 12 032No. of bytes in distributed program, including test data, etc.: 90 699Distribution format: tar.gzProgramming language: C++Computer: Any computer running LinuxOperating system: LinuxRAM: 5 MbClassification: 11.1External routines: GNU Scientific Library (http://www.gnu.org/software/gsl/)Nature of problem: Determining properties of the potential, calculation of mass spectrum, couplings, decay widths, oblique parameters, muon g−2, and collider constraints in a general two-Higgs-doublet model.Solution method: From arbitrary potential and Yukawa sector, tree-level relations are used to determine Higgs masses and couplings. Decay widths are calculated at leading order, including FCNC decays when applicable. Decays to off-shell vector bosons are obtained by numerical integration. Observables are computed (analytically or numerically) as function of the input parameters.Restrictions: CP-violation is not treated.Running time: Less than 0.1 s on a standard PC 相似文献16.
17.
In typical nucleation, growth and coarsening problems in the study of defect/adatom accumulation in crystalline solids or surfaces, a large number of Master equations are involved to describe the evolution process. As examples, defect clusters nucleate and grow from point defects in solids when subjected to particle irradiation, and atoms depositing on a substrate form clusters leading to film growth. To efficiently solve the large number of master equations, the grouping method was used, which we have coded into a standard C++ program, taking full advantage of the object-oriented programming style supported in the C++ language. Because of the generic nature of this code, it may be of interest to the modeling nucleation and growth processes. As an example to demonstrate the application of this computer code, the Ostwald ripening process of vacancy clustering during aging in metal nickel is calculated. 相似文献
18.
19.
Maik Höschele Jens Hoff Alexey Pak Matthias Steinhauser Takahiro Ueda 《Computer Physics Communications》2014
We introduce the Mathematica package MT which can be used to compute, both analytically and numerically, convolutions involving harmonic polylogarithms, polynomials or generalized functions. As applications contributions to next-to-next-to-next-to leading order Higgs boson production and the Drell–Yan process are discussed. 相似文献
20.
In this work, the library spinney is presented, which provides an implementation of helicity spinors and related algorithms for the symbolical manipulation program Form. The package is well suited for symbolic amplitude calculations both in traditional, Feynman diagram based approaches and unitarity-based techniques.