首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of hot extrusion on the corrosion behavior of AZ91 magnesiun alloy was investigated by weight loss, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that the extruded alloy had lower corrosion resistance compared to cast alloy. This observation has been explained from point of view of microstructure changes, wherein the increased density of dislocation, twins and grain boundary increased the anodic dissolution of AZ91 alloy and rearrangement of β phase accelerated the rate of both the anodic and cathodic process.  相似文献   

2.
The corrosion behaviour of reverse-pulse electrodeposited nanocrystalline nickel tungsten alloys (nc Ni–W) in pH 3 and 10 3.5 wt.% NaCl solutions is investigated and analysed as a function of grain size. A potentiodynamic polarisation study reveals that the corrosion rate of nc Ni–W generally increases with the reduction of grain size in alkaline condition, but decreases with the reduction of grain size in acidic environment. Furthermore, for both environments, nc Ni–W alloys exhibit superior localised corrosion resistance than a microcrystalline Ni control specimen. Factors controlling the corrosion behaviour of these materials, including grain size, tungsten content, passivation and crystallographic texture are addressed.  相似文献   

3.
Effect of grain size reduction on the electrochemical corrosion behaviour of nanocrystalline Fe was investigated using Tafel polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Nanocrystalline iron was fabricated by pulse electrodeposition using citric acid bath. The grain size of a nanocrystalline surface was analyzed by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The corrosion resistance of Fe in alkaline solution considerably increased as the grain size decreased from microcrystalline to nanocrystalline. The behaviour of passive film growth and corrosion was discussed in terms of excess of free energy caused by nanocrystalline surface.  相似文献   

4.
The effect of grain size and texture on the corrosion properties of commercially pure titanium was investigated. Equal channel angular pressing (ECAP) was used to produce different grain size and various crystallographic orientations. Electrochemical impedance spectroscopy was employed to measure the corresponding surfaces’ general corrosion resistance. Samples with the (0 0 0 2) planes parallel to the surface were found to offer the highest corrosion resistance, regardless of their grain size.  相似文献   

5.
The corrosion behavior of extruded Nd-free AZ91 and extruded AZ91 + 1.5Nd alloy was investigated by weight loss and electrochemical measurements. The results showed that the extruded AZ91 + 1.5Nd alloy had higher corrosion resistance compared to the extruded Nd-free AZ91 alloy, which could been explained from point of view of microstructure changes: (1) the significant decrease of twins and dislocation decreased the anodic dissolution rate; (2) the micro-galvanic corrosion was inhibited by the formation of Al3Nd phase; and (3) Nd not only increased the percent of Non-Faraday process, but also led to anisotropic feature on the corrosion mechanism.  相似文献   

6.
Ni–Co nanocystalline coatings were electrodeposited from a modified Watts bath. Increasing the deposition current density had no significant effect on structure, corrosion and tribocorrosion behavior of the coatings. Adding saccharin into the bath reduced the grain size, increased the hardness, changed the texture component from (2 0 0) to (1 1 1), smoothed the surface morphology, increased the corrosion resistance and improved the tribocorrosion behavior of coating. Presence of sodium lauryl sulfate in the bath increased the corrosion resistance of coating by producing a more compact surface morphology. However, the coating showed low tribocorrosion resistance, probably due to its lower hardness.  相似文献   

7.
Effect of grain size on corrosion of bulk nanocrystalline copper was investigated using potentiodynamic polarization measurements in 0.1 M NaOH solution. Bulk nanocrystalline copper was prepared by inert gas condensation and in situ warm compress (IGCWC) method. The grain sizes of all bulk nanocrystalline samples were determined to be 48, 68 and 92 nm using X-ray diffraction (XRD). Results showed that bulk coppers displayed an active-passive-transpassive behaviour with duplex passive films. From polycrystalline to nanocrystalline, grain size variation showed little effect on the overall corrosion resistance of copper samples.  相似文献   

8.
A corrosion test in static state water vapor environment and a recession test in high velocity steam jet environment for zircon bulk were performed at 1300 °C. The trace of the water vapor corrosion could be recognized on the grain surfaces and at the grain boundaries for the sample after the static state corrosion test. Sand ripple like morphology was generated on the grain surfaces and etch pits with less than 0.1 μm size were formed at the grain boundaries. A porous structure was formed on the bulk surface of the sample after the steam jet test. A glassy phase enriched with silica could be recognized on the surface of the sample after the test. Cracks were induced on the bulk surface during the test. The zircon phase at the bulk surface decomposed into monoclinic zirconia phase and the fraction of silica component at the bulk surface decreased by the steam jet test. The monoclinic zirconia phase was observed to re-generate and grow on the bulk surface.  相似文献   

9.
The grain boundary network (GBN) was controlled by grain boundary engineering (GBE) in a 304 stainless steel. The total length proportion of Σ3n coincidence site lattice (CSL) boundaries was increased to more than 70% associating with the formation of large size highly twinned grain-cluster microstructure. Only coherent twin boundaries (Σ3c) were found to be resistant to intergranular corrosion (IGC) and only such boundaries could be termed “special” ones. The improvement of resistance to IGC of the GBE specimen can be attributed to the large size grain-clusters associated with high proportion of the Σ3n boundaries and the interconnected Σ3n-type triple junctions.  相似文献   

10.
The influence of precipitates on the electrochemical performance of Al–Zn–In–Mg–Ti–Si sacrificial anode was investigated by the TEM observation and electrochemical measurements. The results indicate that the shape and size of precipitates in the alloys has great impact on the electrochemical performance. The anodes with rod-like precipitates are easily corroded along grain boundaries, resulting in the low current efficiency caused by serious grain loss. In comparison, the anodes with spherical or discal precipitates have high current efficiency and even corrosion morphology. The precipitates with a size of about 400 nm are conducive to improve the electrochemical performance of anodes.  相似文献   

11.
Strain concentration at grain boundaries and grain boundary microstructure in cold worked Alloy 600 were characterized. Excluding the annealing twin boundaries, the base and 20% cold worked alloys exhibited higher random grain boundary fractions than the 8% and 40% cold worked alloys. An increased low angle boundaries and decreased annealing twins were observed with deformation. The 20% cold worked alloy displayed a maximum strain concentration at grain boundaries. The stress corrosion cracking growth in cold worked Alloy 600 in high temperature water showed a strong correlation with the strain concentration at grain boundaries.  相似文献   

12.
A microcrystalline aluminium film with grain size of about 400 nm was prepared by magnetron sputtering technique. Its corrosion behaviour was investigated in NaCl containing acidic solution by means of potentiodynamic polarization curves and electrochemical noise (EN). The polarization results indicated that the corrosion potential of the sample shifted towards more positive direction, while its corrosion current density decreased compared with that of pure coarse-grain Al. The EN analysis based on stochastic model demonstrated that there existed two kinds of effect of microcrystallization on the pitting behaviour of pure aluminium: (1) the rate of pit initiation is accelerated, (2) the pit growth process was impeded. This leads to the enhancement of pitting resistance for the microcrystallized aluminium.  相似文献   

13.
This work reports on the numerical simulation results of the grain size effect on the corrosion processes using a cellular automata model. The material considered consists of domains and their edges. The domains represent the monocrystalline cores while their edges represent the intergranular defects. Either a periodic pattern or randomly generated domains of Voronoï tessellation are used. The model parameters, taking into account the polycrystalline aspect of corrosion, are the domain density and the corrosion probabilities of metal grain core and grain boundary sites. The corrosion probability for grain edge is taken as higher than for the grain core. A complicated surface structure appears with a high geometrical roughness if the density of defects is not too high. A strong correlation between the roughness evolution, the metal crystalline properties and the corrosion mechanism of the metal dissolution was established.  相似文献   

14.
Ultrafine-grained (UFG) copper was prepared by facile machining procedure. High resolution transmission electron microscopy images revealed that, in UFG Cu, minimum grain size of 80 nm could be formed when a small machining rake angle was applied. The electrochemical corrosion behavior of UFG Cu in 0.5 M HCl was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy. Comparing with coarse-grained Cu, UFG Cu exhibited notably declined corrosion current density. Particularly, when the size of Cu grains were reduced from 500 μm to 80 nm, the charge transfer resistance of anodic dissolution step dramatically increased from 200 to 621 Ω cm2.  相似文献   

15.
The effect of artificial aging parameters on the corrosion performance of air cooled AlMgSi(Cu) model alloy extrusions was investigated. Accelerated corrosion test revealed that the extrusions were highly susceptible to intergranular corrosion (IGC) in the naturally aged condition. However, IGC susceptibility was reduced, and finally eliminated, by artificial aging. Overaging introduced slight pitting susceptibility. EDS X-ray mapping in FE-TEM revealed Mg2Si and Q-phase (Al4Cu2Mg8Si7) grain boundary precipitates and a continuous Cu-enriched grain boundary film. IGC susceptibility was related to the Cu-enriched grain boundary film. Increased IGC resistance was caused by coarsening of the grain boundary film by aging. Pitting susceptibility by over aging evolved due to coarsening of the Q-phase particles in the grain bodies.  相似文献   

16.
The erosion resistance of CO2 corrosion scales formed on carbon steel was investigated in water–sand two-phase flow utilizing weight loss test, scanning electron microscopy, and X-ray diffraction. The effects of CO2 partial pressure, stirring speed, test time, and grain size on the erosion resistance of the scales were analysed. Results show that several characteristics of CO2 corrosion scales are key factors affecting erosion resistance. Cubic polynomials are used to fit the erosion rate data, and effectively evaluate the ability of CO2 corrosion scales to resist erosion. An erosion mechanism, based on fluid dynamics and CO2 corrosion scales characteristics, is discussed.  相似文献   

17.
Nitrogen ions of 30 keV with different fluxes ranging from 5 × 1016 to 8 × 1017 ions/cm2 were implanted in Ti foil of 1.8 mm thickness. X-ray diffraction (XRD) was used to obtain the structural characteristics, while atomic force microscope (AFM) was employed to obtain the surface morphology of the samples. The potentiodynamic method was employed to obtain corrosion resistance of the samples in NaCl (3.5%) solution. Titanium nitride formation was enhanced with increasing the nitrogen ion flux, while grain size and surface roughness of the samples were also increased. Optimum corrosion resistance was obtained for 5 × 1016 (N+ ions/cm2).  相似文献   

18.
Grain boundary microstructure, strain distribution and stress corrosion cracking (SCC) in one dimensional (1D), two dimensional (2D) and three dimensional (3D) cold worked Alloy 600 were investigated. The cold working decreased the annealing twins and increased low angle boundaries. 2D cold working caused lower strain concentration at grain boundaries than 1D and 3D cold working. The intergranular SCC (IGSCC) susceptibility was the highest in 1D cold worked alloy while lowest in 2D cold worked alloy. The IGSCC susceptibility displayed a strong correlation with the grain boundary strain concentration and the grain boundary microstructure.  相似文献   

19.
The corrosion behavior of Cu–Al and Cu–Al–Be (0.55–1.0 wt%) shape-memory alloys in 0.5 M H2SO4 solution at 25 °C was studied by means of anodic polarization, cyclic voltammetry, and alternative current impedance measurements. The results of anodic polarization test show that anodic dissolution rates of alloys decreased slightly with increasing the concentrations of aluminum or beryllium. Severe intergranular corrosion of Cu–Al alloy was observed after alternative current impedance measurement performed at the anodic potential of 0.6 V. However, the addition of a small amount of beryllium was effective to prevent the intergranular corrosion. The effect of beryllium addition on the prevention of intergranular corrosion is possibly attributed to the diffusion of beryllium atoms into grain boundaries, which in turn deactivates the grain boundaries.  相似文献   

20.
The effect of annealing on the corrosion behaviour of the ultrafine-grained pure titanium (Ti) produced by high-ratio differential speed rolling was examined in a 0.5 M H2SO4 solution using potentiodynamic polarisation and weight loss methods. The results indicated that post-rolling annealing significantly affected the corrosion resistance of ultrafine-grained Ti. It was concluded that annealing treatments leading to a decrease in dislocation density and residual stress while maintaining an ultrafine grain size and strong basal texture can allow for the development of pure Ti with a good combination of high strength and high corrosion resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号