首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RSA算法的CUDA高效实现技术   总被引:1,自引:1,他引:0       下载免费PDF全文
CUDA(Compute Unified Device Architecture)作为一种支持GPU通用计算的新型计算架构,在大规模数据并行计算方面得到了广泛的应用。RSA算法是一种计算密集型的公钥密码算法,给出了基于CUDA的RSA算法并行化高效实现技术,其关键为引入大量独立并发的Montgomery模乘线程,并给出了具体的线程组织、数据存储结构以及基于共享内存的性能优化实现技术。根据RSA算法CUDA实现方法,在某款GPU上测试了RSA算法的运算性能和吞吐率。实验结果表明,与RSA算法的通用CPU实现方式相比,CUDA实现能够实现超过40倍的性能加速。  相似文献   

2.
塔台模拟机冲突检测算法是一种耗时大的并行算法。针对其导致塔台模拟系统核心服务器CPU负担过重的缺点,在常用冲突检测算法的基础上,提出一种基于统一设备构架(CUDA)的塔台模拟机冲突检测实现方案。首先介绍GPU并行运算的体系结构基础,并将基于卡尔曼滤波的目标物体跟踪技术的分层冲突检测算法移植到GPU。然后利用相同价格的CPU和GPU对比运算效果。实验结果表明:与相同算法的CPU实现方案相比,GPU实现方案将计算效率提高10~50倍。使用此方案,极大地减轻了核心服务器的负担,使塔台模拟机的性能得到质的提高。  相似文献   

3.
杨升  管群 《计算机工程与设计》2011,32(12):4231-4236
针对泥石流仿真过程中海量数据计算问题,采用CUDA技术即结合CPU与GPU的优点研究了一种协同计算方法以提高数据计算效率和仿真性能。同时,搭建了基于GPU的泥石流仿真计算平台,对优化的CUDA并行计算方法进行验证。实验结果表明,该方法对海量数据的计算具有快速准确、低成本、低功耗的特点,能为灾害预测提供及时准确的决策支持,满足了高密集型计算的需求。  相似文献   

4.
图形处理器(graphic processing unit,GPU)的最新发展已经能够以低廉的成本提供高性能的通用计算。基于GPU的CUDA(compute unified device architecture)和OpenCL(open computing language)编程模型为程序员提供了充足的类似于C语言的应用程序接口(application programming interface,API),便于程序员发挥GPU的并行计算能力。采用图形硬件进行加速计算,通过一种新的GPU处理模型——并行时间空间模型,对现有GPU上的N-body实现进行了分析,从而提出了一种新的GPU上快速仿真N-body问题的算法,并在AMD的HD Radeon 5850上进行了实现。实验结果表明,相对于CPU上的实现,获得了400倍左右的加速;相对于已有GPU上的实现,也获得了2至5倍的加速。  相似文献   

5.
张佳康  陈庆奎 《计算机工程》2010,36(15):179-181
针对具有高浮点运算能力的流处理器设备GPU对神经网络的适用性问题,提出卷积神经网络的并行化识别算法,采用计算统一设备架构(CUDA)技术,并定义其上的并行化数据结构,描述计算任务到CUDA的映射机制。实验结果证明,在GTX200硬件架构的GPU上实现的并行识别算法的平均浮点运算能力峰值较CPU上串行算法提高了近60倍,更适用于神经网络的相关应用。  相似文献   

6.
Sorting is a very important task in computer science and becomes a critical operation for programs making heavy use of sorting algorithms. General‐purpose computing has been successfully used on Graphics Processing Units (GPUs) to parallelize some sorting algorithms. Two GPU‐based implementations of the quicksort were presented in literature: the GPU‐quicksort, a compute‐unified device architecture (CUDA) iterative implementation, and the CUDA dynamic parallel (CDP) quicksort, a recursive implementation provided by NVIDIA Corporation. We propose CUDA‐quicksort an iterative GPU‐based implementation of the sorting algorithm. CUDA‐quicksort has been designed starting from GPU‐quicksort. Unlike GPU‐quicksort, it uses atomic primitives to perform inter‐block communications while ensuring an optimized access to the GPU memory. Experiments performed on six sorting benchmark distributions show that CUDA‐quicksort is up to four times faster than GPU‐quicksort and up to three times faster than CDP‐quicksort. An in‐depth analysis of the performance between CUDA‐quicksort and GPU‐quicksort shows that the main improvement is related to the optimized GPU memory access rather than to the use of atomic primitives. Moreover, in order to assess the advantages of using the CUDA dynamic parallelism, we implemented a recursive version of the CUDA‐quicksort. Experimental results show that CUDA‐quicksort is faster than the CDP‐quicksort provided by NVIDIA, with better performance achieved using the iterative implementation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
为提高大规模并行计算的并行效率,充分发挥CPU与GPU的功能特点,特别是体现GPU强大的运算能力,提出了用消息传递接口(MPI)将一组GPU连接起来。使GPU通用计算与计算流体力学中的LBM(latticeBoltzmannmethod)算法相结合。根据GPU通用计算与LBM算法的原理,使MPI作为计算分配的机制,CUDA(compute unified device architecture)作为主要的计算执行引擎,建立支持CUDA的GPU集群,在集群上对LBM算法中的D2Q9模型进行二维方腔流数值模拟。实验结果表明,利用GPU组模拟与CPU模拟结果一致,更充分发挥了GPU的计算能力,提高了并行效率。  相似文献   

8.
Recent development in Graphics Processing Units (GPUs) has enabled inexpensive high performance computing for general-purpose applications. Compute Unified Device Architecture (CUDA) programming model provides the programmers adequate C language like APIs to better exploit the parallel power of the GPU. Data mining is widely used and has significant applications in various domains. However, current data mining toolkits cannot meet the requirement of applications with large-scale databases in terms of speed. In this paper, we propose three techniques to speedup fundamental problems in data mining algorithms on the CUDA platform: scalable thread scheduling scheme for irregular pattern, parallel distributed top-k scheme, and parallel high dimension reduction scheme. They play a key role in our CUDA-based implementation of three representative data mining algorithms, CU-Apriori, CU-KNN, and CU-K-means. These parallel implementations outperform the other state-of-the-art implementations significantly on a HP xw8600 workstation with a Tesla C1060 GPU and a Core-quad Intel Xeon CPU. Our results have shown that GPU + CUDA parallel architecture is feasible and promising for data mining applications.  相似文献   

9.
CUDA架构下H.264快速去块滤波算法   总被引:1,自引:0,他引:1  
刘虎  孙召敏  陈启美 《计算机应用》2010,30(12):3252-3254
针对H.264/AVC视频编码标准中去块滤波器运算复杂度高、耗时巨大这一难题,提出了一种基于NVIDIA计算统一设备架构(CUDA)平台的H.264并行快速去块滤波算法,介绍了CUDA平台硬件结构特点与软件开发流程,根据图形处理器(GPU)的并发结构特点,对BS判定与滤波计算进行了并行优化,降低了算法复杂度,利用共享内存提高了数据访问速率,实现了去块滤波器的并行处理。实验结果表明,在图像质量基本不变的情况下,GPU算法能够明显提高运算速度,平均加速比在20倍左右,取得了良好的效果。  相似文献   

10.
Power efficiency investigation has been required in each level of a High Performance Computing (HPC) system because of the increasing computation demands of scientific and engineering applications. Focusing on handling the critical design constraints in the software level that run beyond a parallel system composed of huge numbers of power-hungry components, we optimize HPC program design in order to achieve the best possible power performance on the target hardware platform. The power performance of a CUDA Processing Element (PE) is determined by both hardware factors including power features of each component including with CPU, GPU, main memory and PCI buses, and their interconnection architecture; and software factors including algorithm design and the character of executable instructions performed on it. In this paper, approaches to model and evaluate the power consumption of large scale SIMD computation by CUDA PEs on multi-core and GPU platforms are introduced. The model allows obtaining design characteristic values at the early programming stage, thus benefitting programmers by providing the necessary environment information for choosing the best power-efficient alternative. Based on the model, CPU Dynamic frequency scaling (DFS) can be applied on CUDA PE architecture that adjusts CPU frequency to enhance power efficiency of the entire PE without compromising its computing performance. The power model and power efficiency improvements of the new designs have been validated by measuring the new programs on the real GPU multiprocessing system.  相似文献   

11.
空间插值是地理信息系统(GIS)空间分析中计算复杂且耗时的操作,因此无法满足实时性的要求。随着图形处理器(GPU)浮点计算能力的大幅提高,GPU通用计算已成为处理GIS领域内复杂计算的研究热点。为实时化一些传统低效的算法提供了良好的契机。利用GPU在并行计算上的优势,将反距离加权法插值算法映射到了统一计算设备架构(CUDA)并行编程架构。首先在GPU中建立二级索引使计算层次得到了合理的划分,然后利用多线程分块策略执行并行插值计算。最后通过实验表明,该方法的插值误差与CPU方法相比能控制在10-6数量级,并且在插值半径较大插值数据较多的情况下,该算法可达到40倍以上的加速比。充分证明了该方法的正确性及高效性。  相似文献   

12.
在多核中央处理器(CPU)—图形处理器(GPU)异构并行体系结构上,采用OpenMP和计算统一设备架构(CUDA)编程实现了基于AMBER力场的蛋白质分子动力学模拟程序。通过合理地将程序划分为CPU单线程、CPU多线程和GPU多线程执行部分,高效地利用了计算机的处理能力。性能测试结果表明,相对于优化后的CPU串行计算,多核CPU-GPU异构并行计算模型有强大的性能优势,特别是将占整个程序执行时间90%的作用力的计算移植到GPU上执行,获得了最高可达12倍的计算加速比。  相似文献   

13.
针对并行处理H.264标准视频流解码问题,提出基于CPU/GPU的协同运算算法。以统一设备计算架构(CUDA)语言作为GPU编程模型,实现DCT逆变换与帧内预测在GPU中的加速运算。在保持较高计算精度的前提下,结合CUDA混合编程,提高系统的计算性能。利用NIVIDIA提供的CUDA语言,在解码过程中使DCT逆变换和帧内预测在GPU上并行实现,将并行算法与CPU单机实现进行比较,并用不同数量的视频流验证并行解码算法的加速效果。实验结果表明,该算法可大幅提高视频流的编解码效率,比CPU单机的平均计算加速比提高10倍。  相似文献   

14.
Graphics processor units (GPU) that are originally designed for graphics rendering have emerged as massively-parallel “co-processors” to the central processing unit (CPU). Small-footprint multi-GPU workstations with hundreds of processing elements can accelerate compute-intensive simulation science applications substantially. In this study, we describe the implementation of an incompressible flow Navier–Stokes solver for multi-GPU workstation platforms. A shared-memory parallel code with identical numerical methods is also developed for multi-core CPUs to provide a fair comparison between CPUs and GPUs. Specifically, we adopt NVIDIA’s Compute Unified Device Architecture (CUDA) programming model to implement the discretized form of the governing equations on a single GPU. Pthreads are then used to enable communication across multiple GPUs on a workstation. We use separate CUDA kernels to implement the projection algorithm to solve the incompressible fluid flow equations. Kernels are implemented on different memory spaces on the GPU depending on their arithmetic intensity. The memory hierarchy specific implementation produces significantly faster performance. We present a systematic analysis of speedup and scaling using two generations of NVIDIA GPU architectures and provide a comparison of single and double precision computational performance on the GPU. Using a quad-GPU platform for single precision computations, we observe two orders of magnitude speedup relative to a serial CPU implementation. Our results demonstrate that multi-GPU workstations can serve as a cost-effective small-footprint parallel computing platform to accelerate computational fluid dynamics (CFD) simulations substantially.  相似文献   

15.
The use of Graphics Processing Units (GPUs) for high‐performance computing has gained growing momentum in recent years. Unfortunately, GPU‐programming platforms like Compute Unified Device Architecture (CUDA) are complex, user unfriendly, and increase the complexity of developing high‐performance parallel applications. In addition, runtime systems that execute those applications often fail to fully utilize the parallelism of modern CPU‐GPU systems. Typically, parallel kernels run entirely on the most powerful device available, leaving other devices idle. These observations sparked research in two directions: (1) high‐level approaches to software development for GPUs, which strike a balance between performance and ease of programming; and (2) task partitioning to fully utilize the available devices. In this paper, we propose a framework, called PSkel, that provides a single high‐level abstraction for stencil programming on heterogeneous CPU‐GPU systems, while allowing the programmer to partition and assign data and computation to both CPU and GPU. Our current implementation uses parallel skeletons to transparently leverage Intel Threading Building Blocks (Intel Corporation, Santa Clara, CA, USA) and NVIDIA CUDA (Nvidia Corporation, Santa Clara, CA, USA). In our experiments, we observed that parallel applications with task partitioning can improve average performance by up to 76% and 28% compared with CPU‐only and GPU‐only parallel applications, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
为满足文本检索、计算生物学等领域海量数据匹配对高性能计算的要求,提出一种基于计算统一设备架构(CUDA)的位并行近似串匹配算法。结合图形处理器(GPU)的高并行计算结构及存储带宽特性,通过优化数据存储方式,实现并行化动态规划矩阵算法(BPM)的加速,并对加速性能进行对比测试。实验结果表明,BPM算法通过GPU加速能获得20倍左右的加速比。  相似文献   

17.
基于CUDA 的Wu-Manber 多模式匹配算法   总被引:1,自引:0,他引:1  
多模式匹配是计算机科学中最基本的问题,其应用在许多领域,在一些情形下也是比较耗时的。GPU拥有比CPU更强的并行计算能力,随着CUDA架构的推出,GPU用于通用计算领域的并行编程工作变得更加轻松。实现了基于CUDA架构的Wu-Manber多模式匹配算法,实验结果表明,相比传统串行算法而言,本文的实现获得了10倍以上的加速。  相似文献   

18.
应用GPU集群加速计算蛋白质分子场   总被引:3,自引:2,他引:1  
针对生物化学计算中采用量子化学理论计算蛋白质分子场所带来的巨大计算量的问题,搭建起一个GPU集群系统,用来加速计算基于量子化学的蛋白质分子场.该系统采用消息传递并行编程环境(MPI)连接集群各结点,以开放多线程OpenMP编程标准作为多核CPU编程环境,以CUDA语言作为GPU编程环境,提出并实现了集群系统结点中GPU和多核CPU协同计算的并行加速架构优化设计.在保持较高计算精度的前提下,结合MPI,OpenMP和CUDA混合编程模式,大大提高了系统的计算性能,并对不同体系和规模的蛋白质分子场模拟进行了计算分析.与相应的CPU集群、GPU单机和CPU单机计算方法对比,该GPU集群大幅度地提高了高分辨率复杂蛋白质分子场模拟的计算效率,比CPU集群的平均计算加速比提高了7.5倍.  相似文献   

19.
基于CUDA的并行布谷鸟搜索算法设计与实现   总被引:1,自引:0,他引:1  
布谷鸟搜索(cuckoo search,CS)算法是近几年发展起来的智能元启发式算法,已经被成功应用于多种优化问题中。针对CS算法在求解大数据、大规模复杂问题时,计算时间过长的问题,提出了一种基于统一计算设备架构(compute unified device architecture,CUDA)的并行布谷鸟搜索算法。该算法的并行实现采用任务并行与数据并行相结合的方式,利用图形处理器(graphic processing unit,GPU)线程块与线程分别映射布谷鸟个体与个体的每一维数据,并行实现CS算法中的鸟巢位置更新、个体适应度评估、鸟巢重建、寻找最优个体操作。整个CS算法的寻优迭代过程完全通过GPU实现,降低了算法计算过程中CPU与GPU的通信开销。对4个经典基准测试函数进行了仿真实验,结果表明,相比标准CS算法,基于CUDA架构的并行CS算法在求解收敛性一致的前提下,在求解速度上获得了高达110倍的计算加速比。  相似文献   

20.
分子动力学模拟作为获得液体、固体性质的重要计算手段,广泛应用于化学、物理、生物、医药、材料等众多领域。模拟体系的复杂性和精确性的需求,使得计算量巨大,耗费时间长。并行计算是加速大规模分子动力学模拟的霍要途径。GPU以几百GFlops甚至上I}Flops的运算能力,为分子动力学模拟等的计算密集型应用提供了新的加速方案。提出了一种基于GPU的分子动力学模拟并行算法—oApT-AD,并在OpenCL和CUDA框架下加以实现。,r}能测试显示,在Tesla C1060显卡上,该算法在OpcnCL框架下的实现相对于CPU的串行实现,最高达到120倍加遥比。通过对比发现,该算法在CUDA上的性能与()pcnCI、基本相当。同时,该算法还可以扩展到两块及以上的GPU上,具有良好的可扩展性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号