首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synergistic effect of iodide ions and benzisothiozole-3-piperizine hydrochloride (BITP) on corrosion inhibition of mild steel in 0.5 M H2SO4 solution has been studied by both chemical and electrochemical methods. The corrosion performance of BITP in 1.0 M HCl and 0.5 M H2SO4 media was examined and compared. The adsorption of BITP and its combination with iodide ions on mild steel surface followed Langmuir adsorption isotherm via chemisorption mechanism. The calculated values of synergism parameter (Sθ) were found to be greater than unity. This result clearly showed the existence of synergism between iodide ions and BITP molecules.  相似文献   

2.
Butyl triphenyl phosphonium bromide (BuTPPB) has been evaluated as a corrosion inhibitor for mild steel in 0.5 M H2SO4 solutions using galvanostatic polarisation and potentiostatic polarisation measurements. The study was also complemented by infra red (IR) spectroscopy, scanning electron microscopy (SEM) and quantum chemical calculations. Galvanostatic polarisation measurements showed that the presence of BuTPPB in aerated 0.5 M H2SO4 solutions decreases corrosion currents to a great extent and the corrosion rate decreases with increasing inhibitor concentration at a constant temperature. At 298K, inhibition efficiency was found to be 94.5% for 10−7 M BuTPPB which increased to about 99% for the BuTPPB concentration of 10−2 M. The effect of temperature on the corrosion behaviour of mild steel was studied at five different temperatures ranging from 298 to 338K. The polarisation curves clearly indicate that BuTPPB acts as a mixed type inhibitor. Adsorption of BuTPPB on the mild steel surface follows the Langmuir isotherm.Potentiostatic polarisation measurements showed that passivation was observed only for lower BuTPPB concentrations (10−5 and 10−7 mol l−1) for the mild steel in 0.5 M H2SO4. IR and SEM investigations also confirmed the adsorption of BuTPPB on the mild steel surface in 0.5 M H2SO4 solutions. The molecular parameters obtained using PM3 semi-empirical method, were correlated with the experimentally measured inhibitor efficiencies.  相似文献   

3.
The effect of 1-methyl-3-pyridin-2-yl-thiourea on the corrosion resistance of mild steel in H2SO4 solution was investigated by different techniques. The results show that the inhibition efficiency increases with the increase of inhibitor concentration. This compound affects both the anodic dissolution of steel and the hydrogen evolution reaction in 0.5 M H2SO4. The adsorption of this inhibitor is also found to obey the Langmuir adsorption isotherm. From the adsorption isotherm, value of the ΔGads for the adsorption process was calculated. From the corrosion rate obtained at 25-45 ± 1 °C Ea, ΔHa and possible mechanism have been proposed.  相似文献   

4.
Galvanic corrosion between the constituent phases in duplex stainless steel   总被引:1,自引:0,他引:1  
The exclusive single-phase with the exact chemical composition of the constituent phase in 2205 duplex stainless steel (DSS) could be prepared using selective dissolution method. The respective electrochemical behavior of each constituent phase could then be measured. The experimental results showed that the two distinct peaks in the active-to-passive transition region of the polarization curve determined in 2 M H2SO4 + 0.5 M HCl mixed solution were actually corresponded to the respective anodic peaks of the single austenite and ferrite phases. A polarity reversion was found between austenite and ferrite phases in mixed H2SO4 + HCl solution and HNO3 solution. Galvanic current measurements also revealed that austenite was anode in HNO3 solution, but became cathode when exposed in 2 M H2SO4 + 0.5 M HCl mixed solution.  相似文献   

5.
The physical behavior of three selected thiazole derivatives, namely 2-Amino-4-(p-tolyl)thiazole (APT), 2-Methoxy-1,3-thiazole (MTT) and Thiazole-4-carboxaldehyde (TCA) at iron (1 1 0) surface dissolved in aqueous solution were studied via molecular dynamics (MD) simulations. From the calculated binding energies, APT showed preferred adsorption on the steel surface among the three tested thiazole derivatives. The inhibition performance of the three thiazoles on the corrosion of mild steel in 0.5 M H2SO4 solutions was investigated at 25 °C. Measurements were conducted under various experimental conditions using weight loss, Tafel polarization and electrochemical impedance spectroscopy. Electrochemical frequency modulation (EFM) technique was also employed here to make accurate determination of the corrosion rates and test validation of the Tafel extrapolation method for measuring corrosion rates. Polarization curves showed that the three thiazole derivatives were of mixed-type inhibitors for mild steel corrosion in 0.5 M H2SO4 solution. EFM results were in agreement with other traditional chemical and electrochemical techniques used in corrosion rate measurements. Chemical and electrochemical measurements are consistent with computational study that APT is the most effective inhibitor among the tested thiazoles.  相似文献   

6.
The corrosion inhibition of mild steel in a 2.5 M H2SO4 solution by 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT) was studied at different temperatures, utilising open circuit potential, potentiodynamic and impedance measurements. The results indicate that APTT performed as an excellent mixed-type inhibitor for mild steel corrosion in a 2.5 M H2SO4 solution and that the inhibition efficiencies increased with the inhibitor concentration but decreased proportionally with temperature. The kinetic and thermodynamic parameters for adsorption of APTT on the mild steel surface were calculated. A chemisorption mechanism of APTT molecules on the mild steel surface was proposed based on the thermodynamic adsorption parameters.  相似文献   

7.
The inhibition behaviour of 2-undecyl-1-ethylamino-1-methylbenzyl quaternary imidazoline (2UMQI) and KI on mild steel in 1.0 M H2SO4 solutions was investigated at 25 °C using electrochemical methods. The results indicated that 2UMQI inhibited the corrosion of mild steel and the extent of inhibition increased with 2UMQI concentrations. The inhibition action in the presence of 2UMQI is due to physical adsorption of 2UMQI. A mixed-inhibition mechanism is proposed for the inhibitive effects of 2UMQI. Inhibition efficiency of 2UMQI was enhanced by the addition of iodide ions. In the presence of KI, the potentials of unpolarization, Eu was observed and increased with KI concentration.  相似文献   

8.
Three ferrocene derivatives, namely 1,1′-diacetylferrocene (Diacetyl Fc), 1,1′-diformylferrocene (Diformyl Fc) and 2-benzimidazolythioacetylferrocene (BIM Fc) were synthesized and their inhibitive effects against mild steel corrosion in aerated 0.5 M H2SO4 and 1 M HCl solutions were evaluated. Corrosion measurements based on polarization resistance (Rp), potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) indicate that Diacetyl Fc, in most cases, accelerates mild steel corrosion in HCl while Diformyl Fc and BIM Fc act as weak inhibitors. In H2SO4 solution, ferrocene derivatives show good inhibition performance. The efficiency of the inhibitors follows the order: BIM Fc > Diformyl Fc ? Diacetyl Fc. Adsorption of both Diacetyl Fc and Diformyl Fc obey Langmuir adsorption isotherm with very low value of free energy of adsorption ΔG° for the Diformyl Fc (physisorption) while adsorption of BIM Fc follows that of Frumkin with high negative value of ΔG° (chemisorption). Both Diformyl Fc and BIM Fc act as mixed-type inhibitors with predominant effect on the anodic dissolution of iron. Analysis of the polarization curves and impedance spectra indicates that charge transfer process mainly controls mild steel corrosion in H2SO4 solution without and with ferrocene compounds. The mechanism of corrosion inhibition or acceleration by ferrocene derivatives was discussed in the light of the molecular structure of the additives.  相似文献   

9.
The efficiency, as steel corrosion inhibitors in 0.5 M H2SO4, of two thiadiazole derivatives, 2-amino-5-(3-pyridyl)-1,3,4-thiadiazole (3-APTD) and 2-amino-5-(4-pyridyl)-1,3,4-thiadiazole (4-APTD), was investigated by polarization and electrochemical impedance spectroscopy. The protection efficiency increases with increasing inhibitors concentration, but the temperature has hardly effect on the inhibition efficiency of APTD. The adsorption of APTD on iron surface obeys the Langmuir isotherm. The experimental results show that the inhibition efficiency of 4-APTD is higher than that of 3-APTD, and the molecular dynamics (MD) simulations show that the adsorption of 4-APTD on iron surface has the higher binding energy than that of 3-APTD.  相似文献   

10.
The inhibition effect of triazolyl blue tetrazolium bromide (TBTB) on the corrosion of cold rolled steel (CRS) in 1.0 M HCl and 0.5 M H2SO4 solution was investigated for the first time by weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy (EIS) methods. The results show that TBTB is a very good inhibitor, and is more efficiency in 1.0 M HCl than 0.5 M H2SO4. The adsorption of TBTB on CRS surface obeys Langmuir adsorption isotherm. Polarization curves reveal that TBTB acts as a mixed-type inhibitor in both acids.  相似文献   

11.
The inhibition effect of 6-benzylaminopurine (BAP) on the corrosion of cold rolled steel (CRS) in 1.0-7.0 M H2SO4 at 25-50 °C was studied by weight loss and potentiodynamic polarization methods. Fourier transform infrared spectroscopy (FTIR) and atomic force microscope (AFM) were used to characterize the CRS surface. The results showed that BAP was a good inhibitor in 1.0 M H2SO4, and the adsorption of BAP obeyed the Temkin adsorption isotherm. Polarization curves showed that BAP acted as a mixed-type inhibitor in sulfuric acid. Depending on the results, the inhibitive mechanism was proposed.  相似文献   

12.
2,2′ benzothiazolyl disulfide (BTDS) has been synthesised and their inhibiting action on mild steel corrosion in 1 M HCl and 0.5 M H2SO4 at 308 K has been investigated using weight loss, EIS, polarization and SEM study. BTDS showed better efficiency in 0.5 M H2SO4 compared to 1 M HCl. Polarization studies revealed that BTDS is a mixed type inhibitor in both acids predominantly cathodic in 1 M HCl where as predominantly anodic in 0.5 M H2SO4. Thermodynamic parameters i.e. free energy of adsorption, enthalpy, entropy and activation energy were calculated, the values of these parameters showed good interaction.  相似文献   

13.
The present article describes the inhibition effect of amino acids cysteine (Cys), methionine (Met) and alanine (Ala), towards the corrosion of lead-alloy (Pb-Ca-Sn) in H2SO4 solution by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), weight loss measurement and scanning electron microscopy (SEM) methods. The influence of inhibitor concentration, temperature and time on inhibitory behavior of the amino acids was investigated. The corrosion data including corrosion current density (Icorr), corrosion potential (Ecorr) and charge transfer resistance (Rct) were determined from Tafel plots and EIS. Recording impedance spectra showed that the charge transfer resistance is increased by increasing adsorption time. The SEM micrographs revealed that the corroded surface area is decreased in the presence of amino acids. Meanwhile, the inhibition efficiency (IE) was found to be depending on the type of amino acid and its concentration. The IE for 0.1 M Cys in 0.5 M H2SO4 is greater than 96%. Adsorption isotherms were fitted by Langmuir isotherm.  相似文献   

14.
A newly synthesized oxadiazol-triazole derivative (TOMP), was investigated as corrosion inhibitor of mild steel in 0.5 M H2SO4 solution using weight loss measurements, polarization and electrochemical impedance spectroscopy (EIS) methods. Results obtained revealed that TOMP is effective corrosion inhibitor for mild steel in sulphuric acid and its efficiency attains more than 97.6% at 298 K. The number of water molecules (X) replaced by a molecule of organic adsorbate was determined from the substitutional adsorption isotherms applied to the data obtained from the weight loss experiments performed on mild steel specimen in acidic solution in the 298-333 K range.  相似文献   

15.
16.
The inhibition effect of alizarin violet 3B (AV3B) on the corrosion of cold rolled steel (CRS) in 1.0 M HCl and 0.5 M H2SO4 solutions was investigated for the first time by weight loss, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) methods. The results show that AV3B is a good inhibitor, and exhibits more efficient in 1.0 M HCl than 0.5 M H2SO4. The adsorption of AV3B on CRS surface obeys Langmuir adsorption isotherm in both acids. Polarization curves reveal that AV3B acts as a mixed-type inhibitor.  相似文献   

17.
The cycloaddition reactions of the cyclic nitrones 1-pyrroline 1-oxide and 3,4,5,6-tetrahydropyridine 1-oxide with alkenes, 11-phenoxy-1-undecene and 11-p-methoxyphenoxy-1-undecene, afforded cycloaddition products (bicyclic isoxazolidines) in excellent yields. One of the cycloadducts on reaction with propargyl chloride and ring opening with zinc in acetic acid afforded quaternary ammonium salt and aminoalcohol, respectively. All the new inhibitor molecules in the presence of 400 ppm at 60 °C achieved inhibition efficiencies, determined by gravimetric method, in the range 99-99.6% and 85-99% for mild steel in 1 M HCl and 0.5 M H2SO4, respectively. Comparable results were obtained by the electrochemical methods using Tafel plots and electrochemical impedance spectroscopy for the synthesized compounds. The isoxazolidine derivatives were also found to be good inhibitors of mold steel corrosion in synthetic brine. Negative values of in the acidic media ensured the spontaneity of the adsorption process. While the corrosion inhibition by these molecules was predominantly under cathodic control in 1 M HCl, the inhibition in 0.5 M H2SO4 was found to be under anodic control. The isoxazolidines and their derivatives were found to be among a rare class of molecules, which provide suitable inhibition mechanism for the corrosion inhibition in HCl as well as in H2SO4 media.  相似文献   

18.
The synergism between red tetrazolium (RT) and uracil (Ur) on the corrosion of cold rolled steel (CRS) in H2SO4 solution is first investigated by weight loss, potentiodynamic polarization, and atomic force microscope (AFM). Effects of inhibitor concentration (25-500 mg l−1), temperature (20-50 °C), and acid concentration (1.0-5.0 M) on synergism are discussed systematically. The results reveal that RT has a moderate inhibitive effect, and its adsorption obeys the Freundlich adsorption isotherm. For Ur, it has a poor effect. However, incorporation of RT with Ur significantly improves the inhibition performance, and produces synergistic inhibition effect.  相似文献   

19.
The title compound (PyS)2 has been synthesized and its inhibiting action on the corrosion of mild steel in 1-5 M H2SO4 solutions at 35-50 °C has been investigated by polarization resistance (Rp), polarization curves and electrochemical impedance spectroscopy (EIS). (PyS)2 showed excellent performance and its efficiency did not affect either by increasing the acid concentration or rise of temperature. Polarization curves indicated that (PyS)2 behaves mainly as anodic inhibitor in 1 M H2SO4 solutions and as a mixed-type inhibitor in 3 and 5 M H2SO4 solutions at different temperatures. Adsorption of (PyS)2 on the steel surface followed Temkin’s adsorption isotherm with a very high negative value of the free energy of adsorption . The activation parameters of the corrosion process were calculated. EIS showed that the charge transfer controls the corrosion process in the uninhibited and inhibited solutions.  相似文献   

20.
The corrosion inhibition of mild steel in 0.5 M H2SO4 and 1 M HCl by hexamethylpararosaniline chloride (HMPC) was investigated using the gravimetric technique in the temperature range 303–333 K. The results indicate that HPMC inhibited the corrosion reaction in both acid media at all temperatures and inhibition efficiency increased with HMPC concentration. The inhibiting action is attributed to general adsorption of protonated and molecular HPMC species on the corroding metal surface. Adsorption followed a modified Langmuir isotherm and the Temkin isotherm, with very high negative values of the free energy of adsorption (). An increase in temperature reduced the inhibition efficiency of HPMC in 0.5 M H2SO4 but increased efficiency in 1 M HCl. Activation parameters such as activation energy (Ea), activation enthalpy (ΔH) and activation entropy (ΔS) as well as the adsorption heat (Qads) were evaluated from the effect of temperature on corrosion and inhibition processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号