首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrosion sensitivity of a friction stir welded (FSW) AA2024-T3 aluminum alloy has been investigated using both normalized intergranular corrosion test (ASTM-G110) and local electrochemical open circuit potential measurements. In addition, Vickers microhardness and microstructural analysis have been performed.The HAZ close to the TMAZ is the most sensitive to intergranular corrosion because of the presence of continuous lines of S′(S) intergranular precipitates at grain boundaries. Pitting corrosion is due to the intermetallic particles. Their fragmentation produced by stirring effect modifies the pitting corrosion behavior. Microhardness variations depend on the relative volume fraction of GPB zones and S′(S) intragranular precipitates.  相似文献   

2.
Polished specimens of AA2024-T3 alloy were immersed for up to 120 min in 0.1 M NaCl. The development of corrosion was monitored using scanning electron microscopy with energy dispersive X-ray spectroscopy (EDXS) and particle induced X-ray emission spectroscopy (PIXE). Both techniques revealed the intermetallic (IM) particle distributions and attack sites as distinguished by detection of chloride species. The earliest stages of attack involved localized attack around isolated IM particles as reported in Part I. Additionally attack occurred on a larger scale developing rapidly with rings of corrosion product surrounding clusters of IM particles. There were significantly higher numbers of IM particles within the corrosion rings, indicating that local clustering played an important role in co-operative corrosion.  相似文献   

3.
Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles   总被引:3,自引:0,他引:3  
Polished specimens of AA2024-T3 were immersed for various times up to 120 min in 0.1 M NaCl. The development of corrosion around isolated intermetallic particles was monitored using scanning electron microscopy with energy dispersive X-ray spectroscopy (EDXS). The earliest stages of attack started with localised corrosion of the S-phase particles resulting in dealloying which was followed by trenching around these particles. Subsequently, trenching was observed around cathodic particles where trenching started with AlCuFeMn particles with Cu/Fe ratios typically around 2.5 and then progressed to AlCuFeMnSi particles. This latter category of particles had a much lower Cu/Fe ratio, typically 0.5.  相似文献   

4.
Corrosion behaviour of friction stir welded AA7108 T79 aluminium alloy   总被引:1,自引:0,他引:1  
The corrosion behaviour of a friction stir welded AA7108 T79 aluminium alloy has been investigated using accelerated testing (ASTM G34 EXCO) and electrochemical measurements. The welded alloy showed the expected zones associated with friction stir welding, namely nugget, thermomechanically affected zone and heat affected zone. Corrosion testing revealed that the edge regions of the thermomechanically affected zone were most susceptible to corrosion. The localized corrosion occurs intergranularly due to the non-uniform distribution of η/η′ (MgZn2) precipitates within the thermomechanically affected zone.  相似文献   

5.
In order to characterise filiform corrosion on a commercial AA2024-T351 aluminium alloy, a detailed microscopical study using SEM and EDS was performed. One set of AA2024-T351 aluminium alloy samples was alkaline-cleaned and deoxidised and chromate conversion coated. Another set was alkaline-cleaned only. Both samples were similarly spray coated with a 42 μm clear polyurethane topcoat. Filaments were subjected to a range of specimen preparation techniques. Sections and top views examined by SEM revealed varying degrees of attack ranging from generalised etching without local attack to severe local attack in the form of pitting, resulting in grain etchout, grain boundary attack and subsurface etchout. EDS revealed the presence of chloride deep into the pits and the subsurface etchout.  相似文献   

6.
Weifeng Xu  Jinhe Liu 《Corrosion Science》2009,51(11):2743-2751
Effect of welding parameters on the microstructure and pitting corrosion of different positions along the thickness of weld nugget zone in friction stir welded 2219-O aluminum alloy plate was investigated using scanning electron microscopy (SEM), polarization experiment and electrochemical impedance tests (EIS). It was found that the material presents significant passivation and the top has best corrosion resistance compared to the bottom and base material. Corrosion resistance decreases with the increase of traverse speed from 60 to 100 mm/min at rotary speed 400 rpm. Corrosion resistance at rotary speed 600 rpm is lower than that at 500 rpm.  相似文献   

7.
The galvanic corrosion temporal increase observed on examination of the weld fusion zone (WFZ) of AA6061 laser weldments in 3.5 wt.% NaCl solution cannot be attributed to electron tunnelling as the surface oxide layer is too thick, or the presence of Cl within the surface layer as this element was not found to be present. Aluminium alloy and WFZ galvanic and surface analyses indicate that the cathodic WFZ corrosion characteristics are due to increases in silicate concentrations in the surface oxide layer, leading to increased ionic and/or p-type semi-conductor conductivity, intermetallic concentrations and surface area.  相似文献   

8.
SEM and EDS studies were carried out to characterise filiform attack on a cerated AA2024-T351 aluminium alloy with a polyurethane topcoat. The filiforms developed on AA2024-T351 were sectioned, stripped of corrosion product and etched to reveal the grain structure. Examination of sections through the filaments and the filaments themselves, revealed severe local attack in the form of pitting resulting in grain etch out, grain boundary attack and subsurface etch out. Chloride ions were detected deep within pits and the subsurface etch out. The observations were similar to those found with filiform corrosion on chromated and coated surfaces. The observations led to development of a filiform corrosion model naming the volume expansion of the corrosion product as the principal cause for delamination.  相似文献   

9.
The effect of welding parameters (rotation speed and travel speed) on the corrosion behaviour of friction stir welds in the high strength aluminium alloy AA2024-T351 was investigated. It was found that rotation speed plays a major role in controlling the location of corrosion attack. Localised intergranular attack was observed in the nugget region for low rotation speed welds, whereas for higher rotation speed welds, attack occurred predominantly in the heat-affected zone. The increase in anodic reactivity in the weld zone was due to the sensitisation of the grain boundaries leading to intergranular attack. Enhancement of cathodic reactivity was also found in the nugget as a result of the precipitation of S-phase. The results were compared with samples of AA2024-T351 that had been heat treated to simulate the thermal cycle associated with welding, and with samples that had been exposed to high temperatures for extended periods to cause significant over-ageing.  相似文献   

10.
Prior corrosion and fatigue of 2024-T3 aluminum alloy   总被引:2,自引:0,他引:2  
Pit-to-crack transition experiments were conducted on two thicknesses of 2024-T3 aluminum alloy. Specimens were corroded using a 15:1 ratio of 3.5% sodium chloride solution and hydrogen peroxide prior to fatigue loading. Cracks originating from corrosion pits were visually investigated using various microscopy techniques in order to gain insight into the pit-to-crack transition process.All pre-corroded specimens in this study fractured from cracks associated with pitting. Pit-to-crack transition was successfully observed using digital video techniques. The more aggressively corroded 2024-T3-4.064 mm specimens experienced more of an overall fatigue life reduction than 2024-T3-1.600 mm specimens. Results indicated that quantities such as pit surface area and surrounding pit proximity are as important as pit depth in determining when and where a crack will form.  相似文献   

11.
A microcrystalline aluminium film with grain size of about 400 nm was prepared by magnetron sputtering technique. Its corrosion behaviour was investigated in NaCl containing acidic solution by means of potentiodynamic polarization curves and electrochemical noise (EN). The polarization results indicated that the corrosion potential of the sample shifted towards more positive direction, while its corrosion current density decreased compared with that of pure coarse-grain Al. The EN analysis based on stochastic model demonstrated that there existed two kinds of effect of microcrystallization on the pitting behaviour of pure aluminium: (1) the rate of pit initiation is accelerated, (2) the pit growth process was impeded. This leads to the enhancement of pitting resistance for the microcrystallized aluminium.  相似文献   

12.
Surface modification by excimer laser surface melting (LSM) has been performed with the aim to improve the corrosion resistance of the AA2050-T8 alloy. LSM produced melted surfaces, largely free of precipitates, with both microstructure and corrosion behaviour depending upon the number of laser pulses employed. Increased number of laser pulses resulted in thicker melted layers, but also in greater trapped porosity and formation of micro-cracks at the overlapping area. Nevertheless, the LSM-treated specimens exhibited enhanced corrosion resistance compared to the untreated alloy, which was associated with the formation of a relatively uniform melted layer and a diminished presence of precipitates.  相似文献   

13.
Cerium molybdate containers loaded with 2-mercaptobenzothiazole were incorporated into epoxy coatings onto aluminium alloys 2024-T3 and investigated with respect to the corrosion protection of the metallic surfaces. The coatings were deposited via the dip-coating process. The morphology of the coatings was examined by Scanning Electron Microscopy. Their composition and structure were investigated by Fourier Transform Infrared Spectroscopy and Energy Dispersive X-ray Analysis. The corrosion resistance of these coatings was investigated by using electrochemical impedance spectroscopy and open circuit potential. After exposure to 0.05 M NaCl solution for 28 days, the coatings with the loaded containers exhibit improved corrosion performance.  相似文献   

14.
Aluminium alloy (AA) 2024-T3 is an important engineering material due to its widespread use in the aerospace industry. However, it is very prone to localized corrosion attack in chloride containing media, which has been mainly associated to the presence of coarse intermetallics (IMs) in its microstructure. In this work the corrosion behaviour of AA 2024-T3 in low concentrated chloride media was investigated using microscopy and electrochemical methods. TEM/EDS observations on non-corroded samples evidenced the heterogeneous composition within the IMs. In addition, SEM observations showed that intermetallics with the same nominal composition present different reactivity, and that both types of coarse IMs normally found in the alloy microstructure are prone to corrosion. Moreover, EDS analyses showed important compositional changes in corroded IMs, evidencing a selective dissolution of their more active constituents, and the onset of an intense oxygen peak, irrespective to the IM nature, indicating the formation of corrosion products. On the other hand, the results of the electrochemical investigations, in accordance with the SEM/EDS observations, evidenced that IMs corrosion dominates the electrochemical response of the alloy during the first hours of immersion in the test electrolyte.  相似文献   

15.
AC electrograining of aluminium is strongly influenced by the surface microstructure. The mechanical and electrochemical properties of the sub-surface present in aluminium alloys affect the electrochemical reactions that prevail during electrograining. Etching pre-treatment of aluminium removes intermetallics and rolled-in oxides; as a result, the attack on the aluminium substrate starts with the initial cycles of the electrograining process. Local electrochemical investigations show differences in corrosion and passivation properties between rolled-in oxides and clean surfaces. The interface between rolled oxides and aluminium matrix acts as a weak point for pit initiation.  相似文献   

16.
The mechanisms of corrosion inhibition of AA2024-T3 by vanadates were studied using chronoamperometry, polarization curves and adsorption isotherms. The electrochemical behaviour of clear solutions containing metavanadates and orange solutions containing decavanadates was clearly distinctive. Metavanadates reduced the kinetics of oxygen reduction to an extent similar to chromates. Corrosion inhibition of AA2024-T3 by metavanadates was very rapid and it might occur by the formation of an adsorbed layer. Reduction of clear metavanadate solution was very slow. Approximately 35 min were required to develop a monolayer of a reduced vanadate species. The adsorption of the inhibitor likely blocked reactive sites on intermetallic particles, discouraging the oxygen reduction reaction (ORR). Adsorption of the inhibitor on the Al matrix could also displace Cl ions, increasing the stability of the passive film and reducing the breakdown of S-phase particles. In contrast, decavanadates were shown to be poor inhibitors of the ORR. A sharp current spike was observed after injection of decavanadates for both Cu and AA2024-T3 at various applied cathodic potentials. Integration of the current peaks suggested the formation of several monolayers of a reduced vanadate species. The formation of several monolayers was in line with the poor performance of decavanadates as inhibitors of AA2024-T3 corrosion.  相似文献   

17.
Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy   总被引:1,自引:0,他引:1  
Two thicknesses of dogbone shaped 2024-T3 aluminum alloy specimens were notched and corroded prior to constant amplitude fatigue loading. The purpose of the subject research was to examine and characterize the effects of various levels of prior corrosion on the growth rate of short fatigue cracks. The specimens were notched and exposed to a corrosive environment per one of three defined protocols prior to experimentation. The notch was manually introduced at one edge of the test section of the specimen, which was later corroded to create a more natural site for crack origination. Fatigue crack nucleation was monitored and subsequent crack growth recorded, with results presented in the form of da/dN vs. ΔK curves.  相似文献   

18.
A high-throughput test has been developed for screening aqueous corrosion inhibitors on aluminium AA2024-T3. The method adapts basic microfluidic technology to create multiple channels in polydimethylsiloxane, which allow solutions to flow over the surface of the alloy, causing severe corrosion within hours if no inhibitor is present. In three-channel experiments under various channel conditions, corrosion rates were accelerated up to 15 times when compared to standard immersion tests. In addition, 10-channel experiments were conducted to simultaneously test 10 different inhibitors, and the results were compared visually and to actual corrosion results obtained quantitatively via solution analyses.  相似文献   

19.
The purpose of this work is to study the effect of heat treatment and chemical processing on the electrochemical behaviour of aluminium alloy AA3102. Aluminium alloy 3102 was electrochemically activated in chloride solution as a result of heat treatment for periods exceeding 10 min at temperatures higher than 400 °C. The electrochemical activation was determined by the presence of deep negative potential transients when exposed to an acidified chloride solution. Furthermore, the anodic current densities became large at a given potential relative to the as-extruded surface as a result of high temperature heat treatment. This activation phenomenon was attributed to enrichment of the surface by lead, which was present in the material as a trace element. Enrichment of lead at the metal-oxide interface was ascertained by GD-OES depth profiling. Chemical and structural changes occurring in the oxide as a result of heat treatment did not have a direct role in the activation process. It was also shown that enrichment of the surface by lead had a sacrificial effect in protecting the surface against pitting corrosion.  相似文献   

20.
The corrosion behaviour of AA2050-T8 was studied after polishing and after laser shock processing (LSP) treatment using the electrochemical microcell technique and the SVET. After polishing, pitting at constituent particles and intergranular corrosion were observed. By contrast, no intergranular corrosion developed after LSP. Microcell measurements revealed that LSP increases the pitting potential. SVET measurements revealed that local anodic currents are systematically lower on LSP-treated surfaces than on polished ones. The current density on the LSP-treated surface remains constant around 50 μA cm−2 up to 123 min after immersion, while on the polished surface it reaches 200 μA cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号