首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitory effect of three Schiff bases 2-{[(2-sulfanylphenyl)imino]methyl}]phenol (A), 2-{[(2)-1-(4-methylphenyl)methylidene]amino}-1-benznethiol (B), and 2-[(2-sulfanylphen-yl)ethanimidoyl)]phenol (C) on corrosion of mild steel in 15% HCl solution has been studied using weight loss measurements, polarization and electrochemical impedance spectroscopy (EIS) methods. The results of the investigation show that the compounds A and B with mean efficiency of 99% at 200 mg/L additive concentration have fairly good inhibiting properties for mild steel corrosion in hydrochloric acid, and they are as mixed inhibitor. All measurements show that inhibition efficiencies increase with increase in inhibitor concentration. This reveals that inhibitive actions of inhibitors were mainly due to adsorption on mild steel surface. Adsorption of these inhibitors follows the Langmuir adsorption isotherm. Thermodynamic adsorption parameters (Kads, ΔGads) of studied Schiff bases were calculated using the Langmuir adsorption isotherm. Activation parameters of the corrosion process such as activation energies, Ea, activation enthalpies, ΔH, and activation entropies, ΔS, were calculated by the obtained corrosion currents at different temperatures. Obvious correlation was found between the corrosion inhibition efficiency and the calculated parameters. The obtained theoretical results have been adapted with the experimental data.  相似文献   

2.
The inhibition effect of four new Schiff bases on the corrosion of 304 stainless steel in 1 M HCl has been studied by polarization, electrochemical impedance spectroscopy (EIS) and weight loss measurements. Polarization curves indicated that all studied Schiff bases act as mixed type (cathodic/anodic) inhibitors. The adsorption of the inhibitors was well described by the Langmuir adsorption isotherm and the adsorption isotherm parameters (Kads, ΔGads) were determined at room temperature. Effect of temperature on the efficiency of the corrosion inhibition process was studied and the values of activation energy, pre-exponential factor (λ), enthalpy of activation and entropy of activation were calculated to elaborate the mechanism of corrosion inhibition. Differences in inhibition efficiency between four tested inhibitors are correlated with their chemical structures.  相似文献   

3.
The effect of 1-methyl-3-pyridin-2-yl-thiourea on the corrosion resistance of mild steel in H2SO4 solution was investigated by different techniques. The results show that the inhibition efficiency increases with the increase of inhibitor concentration. This compound affects both the anodic dissolution of steel and the hydrogen evolution reaction in 0.5 M H2SO4. The adsorption of this inhibitor is also found to obey the Langmuir adsorption isotherm. From the adsorption isotherm, value of the ΔGads for the adsorption process was calculated. From the corrosion rate obtained at 25-45 ± 1 °C Ea, ΔHa and possible mechanism have been proposed.  相似文献   

4.
The synergistic effect of iodide ions and benzisothiozole-3-piperizine hydrochloride (BITP) on corrosion inhibition of mild steel in 0.5 M H2SO4 solution has been studied by both chemical and electrochemical methods. The corrosion performance of BITP in 1.0 M HCl and 0.5 M H2SO4 media was examined and compared. The adsorption of BITP and its combination with iodide ions on mild steel surface followed Langmuir adsorption isotherm via chemisorption mechanism. The calculated values of synergism parameter (Sθ) were found to be greater than unity. This result clearly showed the existence of synergism between iodide ions and BITP molecules.  相似文献   

5.
The corrosion inhibition of mild steel in 1.0 M HCl solution by four Schiff bases was investigated using weight loss and electrochemical measurements and quantum chemical calculations. All compounds showed >90% inhibition efficiency at their optimum concentrations. The activation energy (Ea) of corrosion and other thermodynamic parameters were calculated to elaborate the mechanism of corrosion inhibition. The adsorption of the inhibitors on the mild steel surface follows Langmuir isotherm model. Polarization studies indicated that all studied inhibitors are mixed type. The computed quantum chemical properties viz., electron affinity (EA) and molecular band gap (ΔEMBG) show good correlation with experimental inhibition efficiencies.  相似文献   

6.
Adsorption of four derivatives of piperidinylmethylindoline-2-one on mild steel surface in 1 M HCl solution and its corrosion inhibition properties has been studied by a series of techniques, such as polarization, electrochemical impedance spectroscopy (EIS), weight loss and quantum chemical calculation methods. The values of activation energy (Ea) for mild steel corrosion and various thermodynamic parameters were calculated and discussed. Potentiodynamic polarization measurements showed that all inhibitors are mixed type. The degree of surface coverage was determined by using weight loss measurements and it was found that adsorption process of studied inhibitors on mild steel surface obeys Langmuir adsorption isotherm.  相似文献   

7.
The corrosion inhibition characteristics of two hydroxamic acids, i.e., oxalyl-dihydroxamic acid (C2) and pimeloyl-1,5-di-hydroxamic acid (C7), on carbon steel has been studied using density functional theory (DFT). Quantum chemical parameters such as highest occupied molecular orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), and energy gap (ΔE) have been calculated using B3LYP/6-31 + G∗∗ basis set. The relationship between the inhibition efficiency and quantum chemical parameters has been discussed in order to elucidate the inhibition mechanism of these compounds.  相似文献   

8.
The corrosion inhibition of mild steel in 0.5 M H2SO4 and 1 M HCl by hexamethylpararosaniline chloride (HMPC) was investigated using the gravimetric technique in the temperature range 303–333 K. The results indicate that HPMC inhibited the corrosion reaction in both acid media at all temperatures and inhibition efficiency increased with HMPC concentration. The inhibiting action is attributed to general adsorption of protonated and molecular HPMC species on the corroding metal surface. Adsorption followed a modified Langmuir isotherm and the Temkin isotherm, with very high negative values of the free energy of adsorption (). An increase in temperature reduced the inhibition efficiency of HPMC in 0.5 M H2SO4 but increased efficiency in 1 M HCl. Activation parameters such as activation energy (Ea), activation enthalpy (ΔH) and activation entropy (ΔS) as well as the adsorption heat (Qads) were evaluated from the effect of temperature on corrosion and inhibition processes.  相似文献   

9.
Three ferrocene derivatives, namely 1,1′-diacetylferrocene (Diacetyl Fc), 1,1′-diformylferrocene (Diformyl Fc) and 2-benzimidazolythioacetylferrocene (BIM Fc) were synthesized and their inhibitive effects against mild steel corrosion in aerated 0.5 M H2SO4 and 1 M HCl solutions were evaluated. Corrosion measurements based on polarization resistance (Rp), potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) indicate that Diacetyl Fc, in most cases, accelerates mild steel corrosion in HCl while Diformyl Fc and BIM Fc act as weak inhibitors. In H2SO4 solution, ferrocene derivatives show good inhibition performance. The efficiency of the inhibitors follows the order: BIM Fc > Diformyl Fc ? Diacetyl Fc. Adsorption of both Diacetyl Fc and Diformyl Fc obey Langmuir adsorption isotherm with very low value of free energy of adsorption ΔG° for the Diformyl Fc (physisorption) while adsorption of BIM Fc follows that of Frumkin with high negative value of ΔG° (chemisorption). Both Diformyl Fc and BIM Fc act as mixed-type inhibitors with predominant effect on the anodic dissolution of iron. Analysis of the polarization curves and impedance spectra indicates that charge transfer process mainly controls mild steel corrosion in H2SO4 solution without and with ferrocene compounds. The mechanism of corrosion inhibition or acceleration by ferrocene derivatives was discussed in the light of the molecular structure of the additives.  相似文献   

10.
The adsorption and inhibition effect of Ascorbyl palmitate (AP) on carbon steel in ethanol blended gasoline containing water as a contaminant (GE10 + 1%water) was studied by weight loss and electrochemical impedance spectroscopic (EIS) techniques. The results showed that the addition of ethanol and water to gasoline increase the corrosion rate of carbon steel. AP inhibits the corrosion of carbon steel in (GE10 + 1% water) solution to a remarkable extent. The adsorption of AP on the carbon steel surface was found to obey the Langmuir adsorption isotherm model. The values of activation energy (Ea) and various thermodynamic parameters were calculated and discussed.  相似文献   

11.
The inhibition effect of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) on the corrosion of mild steel in hydrochloric acid medium has been investigated using weight loss measurements, electrochemical impedance spectroscopy, potentiodynamic polarization and quantum chemical study. Among the compounds studied, DHPM-3 exhibited the best inhibition efficiency η (%) 99% at 10 mg L−1 at 308 K. Polarization measurements indicate that all the examined compounds are of mixed-type inhibitor. The adsorption of studied compounds obeyed the Langmuir’s adsorption isotherm. The electronic properties obtained using quantum chemical approach, were correlated with the experimental inhibition efficiencies.  相似文献   

12.
The inhibition performance of the 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole (4-MAT) on mild steel in normal hydrochloric acid medium (1 M HCl) at 30 °C was tested by weight loss, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. This organic compound inhibits the acidic corrosion even at very low concentration, reaching a value of inhibition efficiency up to 98% at a concentration of 3 × 10−4 M. The results obtained from the different corrosion evaluation techniques are in good agreement. Polarisation curves indicate that 4-MAT is a mixed inhibitor, affecting both cathodic and anodic corrosion currents. Data, obtained from EIS measurements, were analyzed to model the corrosion inhibition process through appropriate equivalent circuit model, a constant phase element (CPE) has been used. The adsorption of 4-MAT on the steel surface, in 1 M HCl solution, obeys to Langmuir’s isotherm with a very high negative value of the free energy of adsorption ΔG°ads (chemisorption). X-ray photoelectron spectroscopy (XPS) was carried out to establish the mechanism of corrosion inhibition of mild steel in 1 M HCl medium in the presence of 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole (4-MAT).  相似文献   

13.
The inhibition performance of three Schiff bases containing disulfide bond as corrosion inhibitors for mild steel in 2.0 M HCl has been investigated by weight loss measurements, potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS). Potentiodynamic polarization study showed that all the inhibitors are mixed type. The adsorption of inhibitors on mild steel surface was found to follow Langmuir adsorption isotherm and the adsorption isotherm parameters (Kads, ΔGads) were determined. Quantum chemical calculations were further applied to reveal the adsorption structure and explain the experimental results. Some samples of mild steel were examined by SEM.  相似文献   

14.
The inhibition effect of alkaloids extract from Oxandra asbeckii plant (OAPE) on the corrosion of C38 steel in 1 M hydrochloric acid solution has been investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The corrosion inhibition efficiency increases on increasing plant extracts concentration. Cathodic and anodic polarization curves show that OAPE is a mixed-type inhibitor. The effect of temperature on the corrosion behavior of C38 steel in 1 M HCl with and without addition of plant extract was studied in the temperature range 25–55 °C. The thermodynamic functions of dissolution and adsorption processes were calculated from experimental polarization data and the interpretation of the results are given. The adsorption of this plant extract on the C38 steel surface obeys the Langmuir adsorption isotherm. Surface analysis (Raman) was also carried out to establish the corrosion inhibitive property of this plant extract in HCl solution.  相似文献   

15.
The inhibition effect of Zenthoxylum alatum plant extract on the corrosion of mild steel in 5% and 15% aqueous hydrochloric acid solution has been investigated by weight loss and electrochemical impedance spectroscopy (EIS). The corrosion inhibition efficiency increases on increasing plant extract concentration till 2400 ppm. The effect of temperature on the corrosion behaviour of mild steel in 5% and 15% HCl with addition of plant extract was studied in the temperature range 50-80 °C. Surface analysis (SEM, XPS and FT-IR) was also carried out to establish the corrosion inhibitive property of this plant extract in HCl solution. Plant extract is able to reduce the corrosion of steel more effectively in 5% HCl than in 15% HCl. The adsorption of this plant extract on the mild steel surface obeys the Langmuir adsorption isotherm.  相似文献   

16.
The corrosion inhibition of mild steel in 1 M HCl by 4-hydroxybenzaldehyde-1,3propandiamine (4-HBP) has been investigated using potentiodynamic polarization, electrochemical impedance spectroscopy and chronoamperometry measurements. The experimental results suggest that this compound is an excellent corrosion inhibitor for mild steel and the inhibition efficiency increases with the increase in inhibitor concentration. Polarization curves reveal that this organic compound is a mixed-type inhibitor. The effect of temperature on the corrosion behavior of mild steel in 1 M HCl with the addition of the Schiff base was studied in the temperature range from 25 to 65 °C. The experimentally obtained adsorption isotherms follow the Langmuir equation. Activation parameters and thermodynamic adsorption parameters of the corrosion process such as E a, ΔH, ΔS, K ads, and ΔG ads were calculated by the obtained corrosion currents at different temperatures and using the adsorption isotherm. The morphology of mild steel surface after its exposure to 1 M HCl solution in the absence and in the presence of 4-HBP was examined by AFM images.  相似文献   

17.
In this work, the dodecyl cysteine hydrochloride surfactant was synthesized. The surface properties of this surfactant were studied using surface tension technique. The nanostructure of this surfactant with the prepared gold nanoparticles was investigated using TEM technique. The synthesized surfactant and its nanostructure with the prepared gold nanoparticles were examined as non-toxic corrosion inhibitors for carbon steel in 2 M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The results show that the percentage inhibition efficiency (η%) for each inhibitor increases with increasing concentration until critical micelle concentration (CMC) is reached. The maximum inhibition efficiency approached 76.6% in the presence of 175 ppm of dodecyl cysteine and 90.8% in the presence of the same concentration of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles. Polarization data indicate that the selected additives act as mixed type inhibitors. The slopes of the cathodic and anodic Tafel lines (βc and βa) are approximately constant and independent of the inhibitor concentration. Analysis of the impedance spectra indicates that the charge transfer process mainly controls the corrosion process of carbon steel in 2 M HCl solution both in the absence and presence of the inhibitors. Adsorption of these inhibitors on carbon steel surface is found to obey the Langmuir adsorption isotherm. From the adsorption isotherms the values of adsorption equilibrium constants (Kads) were calculated. The relatively high value of (Kads) in case of dodecyl cysteine hydrochloride self-assembled on gold nanoparticles reveals a strong interaction between the inhibitor molecules and the metal surface.  相似文献   

18.
The corrosion protection of mild steel in a 2.5 M H2SO4 solution by 4,4-dimethyloxazolidine-2-thione (DMT) was studied at different temperatures by measuring changes in open circuit potential (OCP), potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS). Corrosion current densities calculated from EIS data were comparable to those obtained from polarisation measurements. Results showed that DMT inhibited mild steel corrosion in a 2.5 M H2SO4 solution and indicated that the inhibition efficiencies increased with the concentration of inhibitor, but decreased proportionally with temperature. Polarisation curves showed that DMT is a mixed-type inhibitor. Changes in impedance parameters suggested the adsorption of DMT on the mild steel surface, leading to the formation of protective films. The DMT adsorption on the mild steel surface followed the Langmuir adsorption isotherm. The kinetic and thermodynamic parameters for dissolution and adsorption were investigated. Comprehensive adsorption (physisorption and chemisorption) of the inhibitor molecules on the mild steel surface was suggested based on the thermodynamic adsorption parameters.  相似文献   

19.
The corrosion inhibition of mild steel in 0.5 M H2SO4 and 1.0 M HCl by 2-amino-5-phenyl-1,3,4-thiadiazole (APT) has been studied using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) measurements. The results show that the inhibition efficiency increases with the increase of APT concentration in both acids, and the higher inhibition efficiency is obtained in 0.5 M H2SO4. The adsorption of APT molecules on the steel surface obeys Langmuir adsorption isotherm in both acids, and occurs spontaneously. The molecular dynamics method has also been used to simulate the adsorption of ATP molecule and solvent ions on the iron surface. The results show that with the adsorption of sulfate ions the Fe + anion + APT system has the higher negative interaction energy comparing to the case of the adsorption of chloride ions.  相似文献   

20.
The influence of 2,4,6-tris (2-pyridyl)-1,3,5-triazine (TPTZ) on the corrosion of tin, indium and tin-indium alloys in 0.5 M HCl solution at different temperatures was studied. Potentiodynamic cathodic polarization and extrapolation of cathodic and anodic Tafel lines techniques were used to obtained experimental data. In the case of tin, the percent inhibition efficiency (IE%) increases as both concentration of TPTZ and temperature are increased. The value of activation energy (Ea) is smaller in the presence of TPTZ than that in uninhibited solution, and decreases with increasing the concentration. However, the effect of TPTZ on indium and the investigated alloys exhibited similar behavior; so, the maximum inhibition efficiency is observed at lowest concentration (10−6 M) of TPTZ. Then, the value of inhibition efficiency starts to decrease gradually with increasing TPTZ concentration than that of 10−6 M. But at higher concentration (10−3 M) the corrosion current density (Icorr) is still lower than that in uninhibited solution. SEM photographs support that the higher inhibition efficiency is observed at 10−6 M of TPTZ.The plots of ln K versus 1/T in the presence of the TPTZ in the case of tin, the inhibitor showed linear behavior. The standard enthalpy, Δads., entropy, Δads. and free energy changes of adsorption Δads. were evaluated using Frumkin adsorption isotherm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号