首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
用搅拌铸造法制备不同质量分数二硼化钛(TiB2)颗粒增强的铝基复合材料,并研究其摩擦磨损性能.采用销?盘式摩擦试验机对Al2024?TiB2复合材料进行干滑动磨损试验.为了研究摩擦学参数对复合材料的影响,对载荷、滑动距离和滑动速度等参数进行调整.显微组织表征结果表明,TiB2颗粒分散均匀并与基体有良好的结合.实验结果表...  相似文献   

2.
Friction and wear behavior of a peak aged Cu–0.65 wt.%Cr alloy was investigated. The friction and wear experiments were run under ambient conditions with a pin-on-disk tribometer. Experiments were performed using various applied normal loads and sliding velocities. The tribological behavior of the studied alloy was discussed in terms of friction coefficient, wear loss and wear mechanism.Friction coefficient and wear loss have shown large sensitivity to the applied normal load and the sliding velocity. At the sliding velocity of 0.3 m/s weight loss increased from 6.9 to 51 mg by increasing the normal load from 20 to 40 N. At higher sliding velocity minimum weight loss is achieved at 60 N normal load. So it can be seen that with increasing normal load wear rate decreases due to the formation of a continuous tribofilm which consists of Fe–Cu intermetallic. Varying of friction coefficients in different conditions of normal load and sliding velocity is correlated to the wear behavior.The analysis of worn surfaces by XRD and SEM showed that an increase in normal load and sliding velocity creates an intermetallic wear-induced layer, which modifies the wear behavior of the alloy. The XRD result indicates that new phase of Cu9.9Fe0.1 is generated on worn surfaces of the pin specimens during the wear tests. There is a significant correlation between the micrograph of worn surfaces and the wear rate of specimens.  相似文献   

3.
Sliding wear behavior of high velocity arc sprayed Fe-Al coating   总被引:8,自引:0,他引:8  
The friction and wear behavior of Fe-Al intermetallics based coating produced by high velocity are spraying technique under dry sliding at room temperature were investigated using a ball-on-disc tribotester. The effect of sliding speed on friction coefficient and wear of the coating was studied. The worn surface of the coating was analyzed by scanning electron microscope (SEM) to explore sliding friction and wear mechanism. The results show that the variations of friction coefficient can be divided into three distinct steps during the trail. Both the friction coefficient and the wear of the coating increase with increased sliding speed due to accelerated crack propagation rate and lamellar structure with poor ductility of the coating. The coating surface is subjected to alternately tensile stress and compression stress during sliding wear process, and the predominant wear mechanism of the coatings appears to be brittle fracture and delamination.  相似文献   

4.
利用MPx-2000型主轴盘销式磨损实验机和扫描电子显微镜(SEM)研究了相对滑动速度对团球γ (Fe,Mn)3c共晶体增强奥氏体钢基自生复合材料(EAMc)摩擦学性能的影响.实验表明,在干摩擦磨损工况下,EAMc对G45钢摩擦系统的摩擦系数随相对滑动速度的增加呈递减趋势;而磨损率呈递增趋势,但始终远低于奥氏体中锰钢(单一奥氏体相);并且,随着相对滑动速度的提高,EAMC与中锰钢磨损量的差值呈递增趋势.通过对磨损表面和磨屑形貌的分析,发现EAMC在低载下主要磨损机制是磨粒磨损与剥层磨损;高载下的磨损机制主要为剥层磨损与氧化磨损.对偶件之间的粘着作用随相对滑动速度的提高而增加.运用临界转变温度理论与Archard磨损理论分析了相对滑动速度对EAMC摩擦学性能影响的机制.  相似文献   

5.
The lubricated reciprocating wear behavior of two composites A319/15%SiCp and A390/15%SiCp produced by the liquid metallurgy route was investigated by means of an indigenously developed reciprocating friction wear test rig using a fractional factorial-design approach. The main purpose was to study the influence of wear and friction test parameters such as applied load, sliding distance, reciprocating velocity, counter surface temperature and silicon content in composites, as well as their interactions on the wear and friction characteristics of these composites. Two output responses (wear loss and coefficient of friction) were measured. The input parameter levels were fixed through pilot experiment conducted in the newly developed reciprocating friction and wear test rig. The counter surface material used for the wear study was cast iron having Vickers hardness of 244 HVN. It had been demonstrated through established equations that A390/15%SiCp composite is subjected to low wear compared to the A319/15%SiCp composite. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated. The applied load, sliding distance, reciprocating velocity, counter surface temperature, and silicon content in composite are the five important factors controlling the friction and wear characteristics of the composite in lubricated condition. Moreover, the two factor interactions have a strong effect on the wear of composites. The results give a comprehensive insight into the wear of the composites.  相似文献   

6.
借助UMT-2型摩擦磨损试验机详细研究了转速对 SiCp/A356复合材料干滑动摩擦磨损特性的影响,并用SEM、EDS和奥林巴斯激光共焦扫描显微镜观察并分析了其高温摩擦磨损行为。结果表明:铸态材料的磨损率增加幅度和摩擦系数曲线波动较大;T6态材料的磨损率增加幅度和摩擦系数曲线波动较小,表现出优异的摩擦性能。铸态材料的磨损机理主要由低转速时的氧化磨损和剥离磨损转变为高转速时的粘着磨损,而T6态材料主要由低转速时的氧化磨损转变为高转速时的剥离磨损和磨粒磨损。高转速区时,铸态材料的磨损断面中出现裂纹,而T6态材料只是存在简单的磨削痕迹和颗粒脱落现象,热处理后复合材料的高温耐磨性能明显提高。  相似文献   

7.
目的研究AlSiFeMm(Mm为镍包混合稀土)非晶纳米晶涂层在干摩擦和3.5%NaCl溶液中的摩擦磨损行为。方法采用Rtec(MFT-3000)往复式磨损试验机测试涂层在干摩擦条件和有腐蚀介质条件下的摩擦磨损性能,使用LEXTOL3000-IR非接触三维表面轮廓仪测定涂层的磨损体积和磨痕的三维形貌,利用扫描电子显微镜对磨痕进行形貌观察和成分分析。结果铝基非晶纳米晶涂层的摩擦系数随着载荷的增加而不断减小。干摩擦条件下,铝基非晶纳米晶涂层的磨损率随着载荷的增加而增大,当磨损速度为10 mm/s、载荷为15 N时,涂层相对耐磨性为6061铝合金的2.5倍,其磨损机制为脆性剥落、磨粒磨损,并伴随氧化磨损。在3.5%NaCl溶液中,涂层的磨损率随着载荷的增加而逐渐降低,当磨损速度为35 mm/s、载荷为30N时,涂层的耐磨性能约为6061铝合金的8倍,其失效机制主要为剥层磨损和腐蚀磨损。结论铝基非晶纳米晶复合涂层在干摩擦和腐蚀介质中均表现出较为优异的耐磨性能,可以作为轻质合金涂层应用于表面防护领域。  相似文献   

8.
采用激光熔覆技术在TC4钛合金表面制备以反应合成TiB2和TiC颗粒为增强相的Ni基复合涂层,利用УТИТВ-100型销-盘摩擦磨损试验机研究了激光熔覆层在真空(10-5Pa)中的干滑动摩擦磨损性能,利用光学显微镜和扫描电子显微镜观察了摩擦偶件的磨损表面形貌,讨论了激光熔覆层的磨损机制。结果表明,激光熔覆层的摩擦系数在0.25~0.5之间,明显低于TC4合金的摩擦系数(0.45~0.8),磨损体积约为TC4合金的40%。随法向载荷和滑动速度的增加,激光熔覆层的磨损体积增加,激光熔覆层的磨损机制主要为粘着磨损和粘附转移物引起的磨粒磨损。  相似文献   

9.
本文用原位反应法制备了不同TiC和TiB增强相含量的(TiC+TiB)/Ti6Al4V复合材料(简记为TMC),用HT-1000型摩擦磨损试验机研究了外加载荷对原位本文用原位反应法制备了不同TiC和TiB增强相含量的(TiC+TiB)/Ti6Al4V复合材料(简记为TMC),用HT-1000型摩擦磨损试验机研究了外加载荷对原位(TiC+TiB)/Ti6Al4V复合材料干滑动摩擦磨损性能的影响,并利用扫描电镜及布鲁克三维形貌仪观察分析其磨损行为。结果显示,与Ti6Al4V基体相比,TiC+TiB增强相的生成提高了复合材料的耐磨性。对于含不同体积分数增强相的复合材料,随着外加载荷的增加,材料的磨损率和磨损深度增加,摩擦系数减小且在小范围内波动。在小负载下,磨损的表面覆盖有一些沟槽和少量磨屑;在大负载下,磨损的表面覆盖有一些浅沟槽和大量磨屑。磨损机制为磨粒磨损和氧化磨损。随着负荷增加,碎屑的尺寸增加,磨损加剧。  相似文献   

10.
采用UMT-2MT摩擦试验机考察了触变成形和传统金属型铸造AZ91D镁合金滑动磨损行为。其摩擦条件是干摩擦往复式、球面一平面接触、与GCr15钢作对偶;研究了载荷和频率对镁合金摩擦磨损性能的影响。分析了其摩擦系数变化和磨痕形貌,并探讨了其磨损机理。研究结果表明,不论何种工艺方法的平均摩擦系数都在0.22~0.40之间,随着频率的增加二者的平均摩擦系数都减小,触变成形的耐磨性比金属型铸造的好;二者的磨损机制相似,在较低载荷下,镁合金的磨损机制为氧化磨损,随着载荷的增大,磨损机制为磨粒磨损、剥层磨损。  相似文献   

11.
用销-盘摩擦磨损试验机考察 Z71E压铸镁合金在载荷为10~50 N时的高温摩擦学行为,利用光学显微镜(OM)和扫描电镜(SEM)对磨损表面和亚表面进行分析,通过光学显微镜(OM)、X射线衍射仪(XRD)、差示热扫描(DSC)等对AZ71E合金的高温微观结构、热稳定性和力学性能进行研究。结果表明:随着载荷和滑动距离的增加磨损率增大,而摩擦系数则随着载荷的增加而减少。在低载荷时,AZ71E镁合金的磨损机制主要是磨粒磨损;在150℃和高载荷下,粘着磨损和轻微的剥层磨损是主要的磨损机制;而在200℃及高载荷下,镁合金的主要磨损机制是严重的剥层磨损和熔融磨损。AZ71E镁合金的高温摩擦学性能提高的内在机制是AZ71E镁合金中第二相Al11Ce3使镁合金的高温拉伸和延展性能显著提高。  相似文献   

12.
三维网络陶瓷增强铝基复合材料的干摩擦磨损性能   总被引:8,自引:0,他引:8  
设计和制备了一种新型的三维网络陶瓷(骨架)增强铝合金复合材料.研究了铝合金及不同成分复合材料在不同温度及载荷下的摩擦系数和磨损率;用扫描电镜(SEM)观察其磨损表面,并分析了三维网络陶瓷(骨架)对铝合金磨损机制的影响.结果表明:复合材料的耐磨性远优于铝合金,而且随着三维网络陶瓷体积分数、温度及载荷的增加,复合材料的抗磨损性能明显提高;这种新型复合材料的摩擦系数随载荷变化保持稳定;在很宽的温度范围内,摩擦系数的稳定性均优于铝合金.这是由于三维网络陶瓷在磨损表面形成硬的微凸体起承载作用,其独特的结构制约了基体合金的塑性变形和高温软化,有利于磨损表面氧化膜的留存.  相似文献   

13.
The present work deals with the investigation on weight loss and coefficient of friction of TiC reinforced Al-4.5%Cu in situ metal matrix composites. Experiments were conducted using pin-on-disc apparatus against abrasive paper by varying the applied load, sliding distance, and weight percentage of TiC. The results indicated significant improvement in the mechanical properties and wear resistance of experimental composites as compared to the parent metal matrix. The percentage of porosity though increased with increasing TiC reinforcement. The variation of weight loss of composites increased linearly with increasing applied load and sliding distance, whereas decreased with increasing weight percentage of TiC reinforcement. The coefficient of friction decreased linearly with increasing applied load and TiC reinforcement. SEM micrographs of worn surfaces show a well compacted transfer layer of wear debris along with wear track over the sliding surface. Grooves, delamination, and crack propagation were also observed in all test samples. The effective depth of penetration and size of debris was seen to reduce with increasing wt.% of TiC reinforcement in metal matrix.  相似文献   

14.
摩擦副表面加工特定的织构后会在不同速度和载荷以及严重乏油的条件下运行,比如设备的启停阶段。因此有必要研究极度乏油条件下速度和载荷对凹坑织构表面摩擦学性能的影响,为表面织构的实际应用进行前期探索。利用激光加工技术在45钢表面加工凹坑织构;在UMT-2型多功能摩擦磨损试验机上,采用球-盘式分别对织构和未织构试样进行乏油滑动试验;利用三维表面轮廓仪和扫描电镜等分析试样表面的磨损形貌。结果表明:相比于未织构试样,凹坑织构在不同速度和载荷下均能有效延长摩擦面间的乏油润滑状态,有良好的减摩效果,可降低摩擦因数约68%~75%。载荷对织构表面的摩擦学性能影响较大,在一定范围内摩擦因数随着载荷的增大而降低;但载荷过高时,在摩擦后期会出现摩擦因数的突然升高,表面磨损严重。  相似文献   

15.
利用氧-乙炔火焰喷熔方法在45号钢表面制取了FeNiBSiCe喷熔层,在SRV球盘摩擦磨损试验机上研究了FeNiBSiCe合金的摩擦磨损行为,用扫描电子显微镜(SEM)、场发射扫描电镜(FEGSEM)和能量色散谱仪(EDS)等技术分析了喷熔层的表面、截面及磨损面形貌.结果表明,FeNiBSiCe喷熔层的耐磨性优于SAE52100钢,喷熔层磨损率随滑动速度增加,先快速降低,随后趋于缓慢,最后上升.摩擦系数随滑动速度的增大而增加,然后趋于稳定.磨损机理是低载荷下为微观切削和疲劳脱层,在相对高载荷下和滑动速度较高时产生显微裂纹,且在涂层表面形成了一层氧化物磨屑层,缓解了微动磨损.  相似文献   

16.
The dry sliding behavior of stir-cast AA6061-10 wt.% B4C composites containing 2.5, 5 and 7.5 wt.% graphite particles was studied as a function of applied load, sliding speed and sliding distance on a pin-on-disk tribotester. The wear rate and friction coefficient increased with increase in applied load and sliding distance. The increase in graphite addition reduced the increase in wear rate and friction coefficient in the sliding speed range 2-2.5 m/s. Scanning electron microscopy of the worn pin revealed a graphite tribolayer, and transmission electron microscopy revealed overlapping deformation bands under 30 N applied load. Upon increasing the applied load to 40 N, welded region with fine crystalline structure was formed due to dynamic recrystallization of AA6061 alloy matrix.  相似文献   

17.
The sliding behaviors of two typical high-temperature alloys of GH2132 and GH605 against WC and SiC balls were investigated at environments from room temperature to 800 °C with a sliding speed of 50 to 125 m/min under a load of 10 to 20 N. The wear performances of high-temperature alloys, WC and SiC balls were rated and their mechanisms were discussed. The four sliding pairs exhibited the markedly different sliding behaviours, in which the GH2132/WC sliding pair had the maximum friction coefficient with 125 m/min under 10 N at room temperature. The variation trends of ball wear rates with the ambient temperature were at odds with those of friction coefficient. The higher friction coefficient did not always lead balls to suffer from the higher wear rate. The maximum worn depth approximated to 250 μm for the GH2132/WC sliding pair with higher friction coefficient. The GH605/WC sliding pair exhibited the lower friction coefficient and lower worn depth of plate. Whether at room temperature or high temperature, the GH605/SiC sliding pair significantly exhibited good wear resistance with a minor damage of ball and plate despite of its higher friction coefficient.  相似文献   

18.
Dry sliding wear tests were performed on a CW614 brass alloy coated with Ni-Cr layers using a pin-on-disk configuration. In order to characterize the surface durability and wear process of Ni-Cr electrodeposition, a parametric study was conducted to provide data on the friction coefficient, wear, and contact surface temperature within a load range of 10-25 N and sliding velocity ranging from 0.78 to 2.35 m/s. Two main wear modes have been observed: (i) micro-transfer phenomenon associated with delamination wear for mild loading conditions, and (ii) macro-transfer along with intensive plastic deformations and oxidative wear for severe loading conditions. The mild-to-severe wear mechanism transitions have been summarized in a wear-friction map.  相似文献   

19.
不锈钢与GFER及CFRPEEK在海水润滑下的摩擦磨损特性   总被引:3,自引:1,他引:2  
为了寻找适合于低速大扭矩海水液压马达的各摩擦副之间的配对材料,分别以不锈钢(316L和9Cr18Mo)与玻纤环氧复合材料(GFER)及碳纤维增强聚醚醚酮(CFRPEEK)为摩擦副,利用MMU-5G屏显式高温材料端面摩擦磨损试验机对摩擦副在海水中接触表面的温度、摩擦因数和摩擦磨损状况进行了测试,并通过激光共聚焦显微镜对接触表面的磨损形貌进行分析。结果表明:不锈钢/GFER的摩擦因数随着时间的变化在0.3~0.4间波动且幅度较大,而不锈钢/CFRPEEK的摩擦因数随着时间的增加稳定在0.1左右;不锈钢/GFER所引起海水温升的幅度也远远高于不锈钢/CFRPEEK;不锈钢/GFER的接触表面出现了大面积的涂抹与擦伤,且磨损程度要大于不锈钢/CFRPEEK;不锈钢316L的耐腐蚀性优于9Cr18Mo。由此可知,316L/CFRPEEK较适合作为低速大扭矩海水液压马达的摩擦副材料。  相似文献   

20.
Dry sliding tests were performed on as-cast AZ31 alloy using a pin-on-disc configuration. Coefficient of friction and wear rate were measured within a load range of 5-360 N at a sliding velocity of 0.785 m/s. Worn surface morphologies were examined using scanning electron microscopy. Five wear mechanisms, namely abrasion, oxidation, delamination, thermal softening, and melting, have been observed. Surface hardness, subsurface plastic strain, worn surface temperature, and cross-sectional optical microscopy were used to characterize hardness change, plastic deformation, and the microstructure evolution in subsurface. The results illustrate the correlation between the wear behavior and evolution of microstructure and hardness in subsurface, and reveal that in the load range of 5-120 N, surface oxidation and hardening originating from large plastic deformation play an important role in maintaining the mild wear, and softening originating from dynamic recrystallization in subsurface and surface melting are responsible for the severe wear in the load range of 120-360 N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号