共查询到18条相似文献,搜索用时 109 毫秒
1.
氧电极还原电催化剂对于质子交换膜燃料电池的发展具有重要的意义.综述了阴极铂合金催化剂的研究现状,包括催化剂的制备方法、影响催化剂性能的主要因素、合金催化剂性能提高的机理分析等. 相似文献
2.
炭黑是一种廉价且具有高导电性的氧还原催化剂, 可应用于微生物燃料电池(MFCs)的阴极。然而, 纯炭黑的催化性能较差, 不能满足实际应用需求。为了提高炭黑的催化性能, 以氯化铁(FeCl3)和三聚氰胺作为Fe源和N源按一定比例与炭黑混合共炭化, 对炭黑进行改性处理。结果表明, 当Fe-N与炭黑的质量比例为2.6∶1时, MFCs的输出功率密度达到最高值, 为1395 mW/m2, 比Pt/C催化剂(876 mW/m2)提高了59%。SEM观察到炭黑基体上形成了椭圆形或柱状晶体, XRD和XPS测试结果显示是在共炭化过程中生成的Fe3C晶体, 引入了吡啶氮和石墨氮, 在催化剂表面形成更多的活性位点, 这是复合催化剂性能提升的关键因素。随着Fe-N比例的提高, 复合催化剂的导电性和比表面积逐渐下降, 从另一方面又限制了其性能的提升。综上所述, 氯化铁、三聚氰胺和炭黑共炭化制备的复合催化剂是一种具有良好性价比的MFCs阴极催化剂, 可在规模化应用中发挥更大作用。 相似文献
3.
质子交换膜燃料电池(PEMFC)具有能量转换效率高、功率密度大、室温启动快、噪音低和零污染等特点,有望减少二氧化碳排放量,缓解能源危机,在轨道交通、航空航天等领域具有广阔的应用前景。催化剂是PEMFC的关键材料, Pt催化氧还原反应活性和稳定性好,是广泛使用且很难被取代的电催化剂。然而Pt储量低、价格昂贵,导致PEMFC成本较高,使用Pt载体可减少PEMFC的Pt负载量,提高Pt利用率。碳材料具有成本低廉、比表面积大、孔结构丰富、电导率和表面性质可调等特性,是广泛应用的Pt载体。商用的炭黑载体对Pt的利用效率低,抗电化学腐蚀性较差。为了进一步提高PEMFC的性能和持续性,需要研发能够均匀负载Pt、高效利用Pt、抗电化学腐蚀性强且导电性好的碳载体,进而实现PEMFC的大规模应用。炭气凝胶、碳纳米管和石墨烯等新型碳载体具有独特的结构和性质,可以提高PEMFC性能和寿命,引起了研究者的广泛关注。本文对近年来PEMFC新型碳材料Pt载体的研究进展进行了较为详细的综述,并对其发展趋势作出了适当评论。 相似文献
4.
5.
氧电极催化剂是制约质子交换膜燃料电池(PEMFCs)发展和应用的一个重要因素, 开发低价高效的非贵金属催化剂对PEMFCs来说已成为当务之急。本研究选择氮掺杂的碳载过渡金属(M-N/C)类催化剂为研究对象, 以铁盐作为金属前驱体, BP2000为碳源, 聚吡咯(PPy)为氮源, 对甲基苯磺酸(TsOH)为掺杂剂, 合成了非贵金属催化剂Fe-PPy-TsOH/C, 探究了不同的热处理温度及钴原子的掺杂对其氧还原催化性能的影响。研究结果表明: 800℃制备的Fe-PPy-TsOH/C催化剂因结晶度高、颗粒大小适中且分布均匀而具有最佳的氧还原催化性能; 一定量的钴原子取代可以改善Fe-PPy-TsOH/C的氧还原催化性能, 当钴的掺杂量为33.33%时(铁钴原子比为2︰1), 催化剂的性能达到最优。 相似文献
6.
7.
燃料电池用质子交换膜的研究进展 总被引:1,自引:0,他引:1
介绍了各种新型质子交换膜(PEM)的研究开发状况,阐述了对全氟磺酸树脂膜改性的研究进展,并对质子交换膜的研究方向和趋势进行了预测. 相似文献
8.
质子交换膜是质子交换膜燃料电池(PEMFC)的和绝缘电子的作用,其性能和寿命直接决定电池的性能和寿命.从膜材料的角度分类,综述了质子交换膜燃料电池用主链含氟聚合物膜、元素有机聚合物膜以及芳香族碳氢化合物膜的特性和研究现状. 相似文献
9.
本文介绍燃料电池组成、分类、特征,着重介绍质子交换膜燃料电池(PEFC)的优势、机理、发展现状及应用前景。 相似文献
10.
11.
12.
Pt‐Pd Bimetal Popcorn Nanocrystals: Enhancing the Catalytic Performance by Combination Effect of Stable Multipetals Nanostructure and Highly Accessible Active Sites 下载免费PDF全文
Yanxia Ma Lisi Yin Guojian Cao Qingli Huang Maoshuai He Wenxian Wei Hong Zhao Dongen Zhang Mingyan Wang Tao Yang 《Small (Weinheim an der Bergstrasse, Germany)》2018,14(14)
Exploration of highly efficient electrocatalysts is significantly urgent for the extensive adoption of the fuel cells. Because of their high activity and super stability, Pt‐Pd bimetal nanocrystals have been widely recognized as one class of promising electrocatalysts for oxygen reduction. This article presents the synthesis of popcorn‐shaped Pt‐Pd bimetal nanoparticles with a wide composition range through a facile hydrothermal strategy. The hollow‐centered nanoparticles are surrounded by several petals and concave surfaces. By exploring the oxygen reduction reaction on the carbon supported Pt‐Pd popcorns in perchloric acid solution, it is found that compared with the commercial Pt/C catalyst the present catalysts display superior catalytic performances in aspects of catalytic activity and stability. More importantly, the Pt‐Pd popcorns display minor performance degradations through prolonged potential cycling. The enhanced performances can be mainly attributed to the unique popcorn structure of the Pt‐Pd components, which allows the appearance and long existence of the high active sites with more accessibility. The present work highlights the key roles of accessible high active sites in the oxygen reduction reaction, which will ultimately guide the design of highly durable Pt‐Pd catalysts. 相似文献
13.
Random Alloyed versus Intermetallic Nanoparticles: A Comparison of Electrocatalytic Performance 下载免费PDF全文
Jocelyn T. L. Gamler Hannah M. Ashberry Sara E. Skrabalak Kallum M. Koczkur 《Advanced materials (Deerfield Beach, Fla.)》2018,30(40)
As synthetic methods advance for metal nanoparticles, more rigorous studies of structure–function relationships can be made. Many electrocatalytic processes depend on the size, shape, and composition of the nanocatalysts. Here, the properties and electrocatalytic behavior of random alloyed and intermetallic nanoparticles are compared. Beginning with an introduction of metallic nanoparticles for catalysis and the unique features of bimetallic compositions, the discussion transitions to case studies of nanoscale electrocatalysts where direct comparisons of alloy and intermetallic compositions are undertaken for methanol electrooxidation, formic acid electrooxidation, the oxygen reduction reaction, and the electroreduction of carbon dioxide (CO2). Design and synthesis strategies for random alloyed and intermetallic nanoparticles are discussed, with an emphasis on Pt–M and Cu–M compositions as model systems. The differences in catalytic performance between alloys and intermetallic nanoparticles are highlighted in order to provide an outlook for future electrocatalyst design. 相似文献
14.
15.
16.
Yuyan Shao Jean‐Pol Dodelet Gang Wu Piotr Zelenay 《Advanced materials (Deerfield Beach, Fla.)》2019,31(31)
In recent years, significant progress has been achieved in the development of platinum group metal‐free (PGM‐free) oxygen reduction reaction (ORR) catalysts for proton exchange membrane (PEM) fuel cells. At the same time the limited durability of these catalysts remains a great challenge that needs to be addressed. This mini‐review summarizes the recent progress in understanding the main causes of instability of PGM‐free ORR catalysts in acidic environments, focusing on transition metal/nitrogen codoped systems (M‐N‐C catalysts, M: Fe, Co, Mn), particularly MNx moiety active sites. Of several possible degradation mechanisms, demetalation and carbon oxidation are found to be the most likely reasons for M‐N‐C catalysts/cathodes degradation. 相似文献
17.
Wei Li Dongdong Wang Yiqiong Zhang Li Tao Tehua Wang Yuqin Zou Yanyong Wang Ru Chen Shuangyin Wang 《Advanced materials (Deerfield Beach, Fla.)》2020,32(19):1907879
The commercialization of fuel cells, such as proton exchange membrane fuel cells and direct methanol/formic acid fuel cells, is hampered by their poor stability, high cost, fuel crossover, and the sluggish kinetics of platinum (Pt) and Pt-based electrocatalysts for both the cathodic oxygen reduction reaction (ORR) and the anodic hydrogen oxidation reaction (HOR) or small molecule oxidation reaction (SMOR). Thus far, the exploitation of active and stable electrocatalysts has been the most promising strategy to improve the performance of fuel cells. Accordingly, increasing attention is being devoted to modulating the surface/interface electronic structure of electrocatalysts and optimizing the adsorption energy of intermediate species by defect engineering to enhance their catalytic performance. Defect engineering is introduced in terms of defect definition, classification, characterization, construction, and understanding. Subsequently, the latest advances in defective electrocatalysts for ORR and HOR/SMOR in fuel cells are scientifically and systematically summarized. Furthermore, the structure–activity relationships between defect engineering and electrocatalytic ability are further illustrated by coupling experimental results and theoretical calculations. With a deeper understanding of these complex relationships, the integration of defective electrocatalysts into single fuel-cell systems is also discussed. Finally, the potential challenges and prospects of defective electrocatalysts are further proposed, covering controllable preparation, in situ characterization, and commercial applications. 相似文献