首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the uplink of a multiuser, multiple input multiple output (MIMO), frequency-time-domain spread, multi-carrier (MC), direct sequence code division multiple access (DS-CDMA) system. In this two-domain (2D) spread system, users are arranged in groups. Each user is assigned a unique time-domain (T-domain) signature code and also shares a frequency-domain (F-domain) signature code with users in the same group. Moreover, each user employs his/her individual T-domain signature code and the shared F-domain signature code to spread multiple symbols, and then sends the spreading signals in parallel from multiple transmit antennas to the antenna array at the base station. However, the multiple access interference (MAI) effect, which results from the non-orthogonality of signature codes and is the main performance limitation, still exists in such an MC DS-CDMA system. To mitigate the MAI effect and improve the performance, we propose user-based and group-based layered detection schemes. Specifically, to enable a trade-off between the performance and the computational complexity, the schemes only use one user's/group's soft decisions for user-based/group-based layered detection. The results of simulations demonstrate that the proposed schemes outperform existing approaches, and their computational complexity is modest.  相似文献   

2.
Layered space-time multiuser detection over wireless uplink systems   总被引:1,自引:0,他引:1  
In this paper, we investigate the use of layered space-time (also known as the vertical Bell Laboratories layered space-time (V-BLAST) scheme) for multiuser detection in fading channels. The multiple transmit antennas in V-BLAST are treated as individual mobile station transmitters, while the base station consists of multiple receive antennas. In the proposed system, users are organized in groups and allocated a unique spreading code within the same group. Using these codes, we are able to separate the different groups, and layered space-time algorithm is then invoked to further remove the remaining interference between users. A decorrelator-type receiver-based layered space-time detection is proposed for both complex and real constellations. For the latter case, we derive our receiver after evaluating and comparing the performance of two decorrelators based on the V-BLAST scheme. It is demonstrated that a significant performance improvement and increase in system capacity is obtained with very low spreading factors. Further results are also introduced by considering reduced complexity receivers based on serial layered space-time group multiuser detection, and parallel layered space-time group multiuser detection.  相似文献   

3.
Combined array processing and space-time coding   总被引:18,自引:0,他引:18  
The information capacity of wireless communication systems may be increased dramatically by employing multiple transmit and receive antennas. The goal of system design is to exploit this capacity in a practical way. An effective approach to increasing data rate over wireless channels is to employ space-time coding techniques appropriate to multiple transmit antennas. These space-time codes introduce temporal and spatial correlation into signals transmitted from different antennas, so as to provide diversity at the receiver, and coding gain over an uncoded system. For large number of transmit antennas and at high bandwidth efficiencies, the receiver may become too complex whenever correlation across transmit antennas is introduced. This paper dramatically reduces encoding and decoding complexity by partitioning antennas at the transmitter into small groups, and using individual space-time codes, called the component codes, to transmit information from each group of antennas. At the receiver, an individual space-time code is decoded by a novel linear processing technique that suppresses signals transmitted by other groups of antennas by treating them as interference. A simple receiver structure is derived that provides diversity and coding gain over uncoded systems. This combination of array processing at the receiver and coding techniques for multiple transmit antennas can provide reliable and very high data rate communication over narrowband wireless channels. A refinement of this basic structure gives rise to a multilayered space-time architecture that both generalizes and improves upon the layered space-time architecture proposed by Foschini (see Bell Labs Tech. J., vol.1, no.2, 1996)  相似文献   

4.
Single carrier‐frequency division multiple access (SC‐FDMA) has been adopted as the uplink transmission standard in fourth generation cellular network to enable the power efficiency transmission in mobile station. Because multiuser MIMO (MU‐MIMO) is a promising technology to fully exploit the channel capacity in mobile radio network, this paper investigates the uplink transmission of SC‐FDMA systems with orthogonal space frequency block codes (SFBC). Two linear MU‐MIMO receivers, orthogonal SFBC (OSFBC) and minimum mean square error (MMSE), are derived for the scenarios with limited number of users or adequate receive antennas at base station. In order to effectively eliminate the multiple access interference (MAI) and fully exploit the capacity of MU‐MIMO channel, we propose a turbo MU‐MIMO receiver, which iteratively utilizes the soft information from maximum a posteriori decoder to cancel the MAI. By the simulation results in several typical MIMO channels, we find that the proposed MMSE MU‐MIMO receiver outperforms the OSFBC receiver over 1 dB at the cost of higher complexity. However, the proposed turbo MU‐MIMO receivers can effectively cancel the MAI under overloaded channel conditions and really achieve the capacity of MU‐MIMO channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a generalised multicarrier direct sequence code division multiple access (MC DS-CDMA) system invoking smart antennas for improving the achievable performance in the downlink. In this contribution, the MC DS-CDMA transmitter employs an antenna array (AA) and steered space-time spreading (SSTS). Furthermore, the proposed system employs both time and frequency (TF) domain spreading for extending the capacity of the system, which is combined with a user-grouping technique for reducing the effects of multi-user interference (MUI). Moreover, to eliminate the high- complexity multiple input multiple output (MIMO) channel estimation required for coherent detection, we also propose a Differential SSTS (DSSTS) scheme. More explicitly, for coherent SSTS detection MVNr number of channel estimates have to be generated, where M is the number of transmit AAs, V is the number of subcarriers and Nr is the number of receive antennas. This is a challenging task, which renders the low-complexity DSSTS scheme attractive.  相似文献   

6.
This paper addresses blind multiuser detection in a direct-sequence code-division multiple-access (DS-CDMA) network in presence of both multiple-access interference and intersymbol interference. In particular, it considers a DS-CDMA system where K out of N users are transmitting; the N admissible spreading codes are known, and so is the code of the user to be demodulated. The number of interferers, the signatures of a certain number, possibly all, of the interferers, and the channel impulse response of each active user are unknown. The spreading codes of the unknown interferers are determined via a procedure that exploits the knowledge of the set of admissible transmitted codes and of the known active codes. The procedure applies to both single and multiple receiving antennas. The performance assessment of a blind decorrelating detector, implemented by resorting to the proposed identification procedure, shows that it outperforms a plain subspace-based blind decorrelator for small sizes of the estimation sample.  相似文献   

7.
Multicode DS-CDMA systems assign more than one spreading sequence to each of the users. In these systems multiple access interference (MAI) is made of a synchronous and an asynchronous component. It is well known that asynchronous MAI alone can be minimized by means of chaos-based spreading. Here we address the trade-off between synchronous and asynchronous MAI by tuning the autocorrelation profile of the chaosbased spreading codes. Improvements in the number of users allowed in the system is demonstrated in certain load conditions with respect to the classical approach of providing each user with a set of orthogonal sequences taken from an i.i.d. process.  相似文献   

8.
The authors propose a system where single antenna mobile users share antennas to transmit their information cooperatively to the common base station. Each mobile user overhears the coded information transmitted by other users, detects it and further encodes it along with its own information. The encoding is done using multilevel coding scheme with convolutional codes as component codes. The proposed system considers the self-information of user u at level u to reduce complexity while decoding. The coded symbols are mapped to M-ary quadrature amplitude modulation constellation using multi-resolution modulation partitioning. This enables the component codes to be designed for lower order constellation. Each cooperative user transmits multilevel coded symbols to the common base station, thus creating transmit diversity. The base station receives noisy superposition of independent Rayleigh faded signals transmitted by cooperative users and pass it through a multistage decoder. The multistage decoder employs maximum likelihood based Viterbi decoder at each stage to detect the information of each user. The Viterbi decoder applies max-log approximation to reduce the branch metric complexity. The proposed cooperative multilevel coding system outperforms non-cooperative multilevel coding system and is less complex than the existing cooperative multilevel coding system.  相似文献   

9.
During the last few years a number of space-time block codes have been proposed for use in multiple transmit antennas systems. We propose a method to extend any space-time code constructed for m transmit antennas to m p transmit antennas through group-coherent codes (GCCs). GCCs make use of very limited feedback from the receiver (as low as 1 bit). In particular the scheme can be used to extend any orthogonal code (e.g., Alamouti code) to more than two antennas while preserving low decoding complexity, full diversity benefits, and full data rate.  相似文献   

10.
In this contribution multicarrier direct-sequence code-division multiple-access (MC DS-CDMA) using space-time spreading (STS)-assisted transmit diversity is investigated in the context of broadband communications over frequency-selective Rayleigh-fading channels. We consider the issue of parameter design for the sake of achieving high-efficiency communications in various dispersive environments. Furthermore, in contrast to conventional MC DS-CDMA schemes employing time (T)-domain spreading only, in this contribution we also investigate broadband MC DS-CDMA schemes employing both T-domain and frequency (F)-domain spreading, i.e., employing TF-domain spreading. The bit-error rate (BER) performance of STS-assisted broadband MC DS-CDMA is investigated for downlink transmissions associated with the correlation based single-user detector and the decorrelating multiuser detector. Our study demonstrated that when appropriately selecting the system parameters, broadband MC DS-CDMA using STS-assisted transmit diversity constitutes a promising downlink transmission scheme. This scheme is capable of supporting ubiquitous communications over diverse communication environments without BER performance degradation.  相似文献   

11.
In this paper, we study the design of linear dispersion (LD) codes for uplink multiuser channels with multiple antennas at the base station and each mobile unit. In the considered scheme, each user employs LD codes to transmit the data, i.e., the transmitted codeword is a linear combination over space and time of certain dispersion matrices with the transmitted symbols. The linear space-time spreading can also be utilized to separate multiple users at the base station. We propose a simulation-based optimization method together with gradient estimation to systematically design the multiuser linear space-time coding under either optimal or suboptimal receivers. We perform the gradient estimation through the score function method. The proposed method can also be applied to design codes under different fading statistics. Simulation results show that under the optimal maximum-likelihood (ML) receiver, the codes obtained by the new algorithm provides roughly the same performance as the low-dimensional spread modulation, as well as the interference-resistant modulation. Moreover, the new codes perform significantly better with suboptimal multiuser receiver structures.  相似文献   

12.
In this paper, we propose double-orthogonal coded space-time-frequency spreading code-division multiple-access (DOC-STFS-CDMA) scheme for the downlink orthogonal frequency-division multiplexing (OFDM) systems employing multiple transmit and receive antennas. First, we introduce the so-called STFS-CDMA and the corresponding minimum mean-square error (MMSE) detection algorithms for three scenarios with different user information. Then, we propose a new class of spreading codes, called double-orthogonal code (DOC), to match the MMSE detection algorithms for STFS-CDMA system. With the special double orthogonality, DOC can effectively exploit space, time, and frequency diversity to enhance the performance of MMSE detectors, and provide the well-balanced signal-to-interference-and-noise ratio to different users. Finally, the performance gain of the proposed scheme over conventional schemes is shown by computer simulation.  相似文献   

13.
Quasi-synchronous multicarrier DS-CDMA using Z-Complementary sequences   总被引:1,自引:0,他引:1  
In this paper, a multicarrier DS-CDMA system which employs Z-Complementary Se- quences (ZCS) as spreading code is investigated. The new system can not only eliminate multipath interference and Multiple Access Interference (MAI), but also support flexible number of users com- pared with system using Orthogonal Complementary (OC) codes. Multicarrier DS-CDMA using OC codes can be regarded as a special case of our proposed system. Zero Correlation Zone (ZCZ) of ZCS can be flexibly adjusted to meet the requireme...  相似文献   

14.
A new family of multistage low-complexity linear receivers for direct sequence code division multiple access (DS-CDMA) communications is introduced. The objective of the proposed design is to mitigate the effect of multiple access interference (MAI), the most significant limiting factor of user capacity in the conventional DS-CDMA channel. The receivers presented here employ joint detection of multiple users and therefore require knowledge of all the signature codes and their timing. In addition, for a multipath environment, reliable estimates of the received powers and phases are assumed available for maximal ratio RAKE combining. Each stage of the underlying design recreates the overall modulation, noiseless channel, and demodulation process. The outputs of these stages are then linearly combined. The combining weights can be chosen to implement different linear detectors, including the decorrelating and minimum mean square error (MMSE) detectors. In this paper, we focus on implementing the MMSE detector. Simulation results illustrate that significant performance gains can be achieved in both synchronous and asynchronous systems.This work was presented in part at IEEE Communication Theory Workshop, April 23–26, 1995, and at IEEE MILCOM '95, November 5–8, 1995.This work was submitted in partial fulfillment of Ph.D. requirements at The City University of New York.  相似文献   

15.
Focusing on the uplink, where mobile users (each with a single transmit antenna) communicate with a base station with multiple antennas, we treat multiple users as antennas to enable spatial multiplexing across users. Introducing distributed closed-loop spatial multiplexing with threshold-based user selection, we propose two uplink channel-assigning strategies with limited feedback. We prove that the proposed system also outperforms the standard greedy scheme with respect to the degree of fairness, measured by the variance of the time averaged throughput. For uplink multi-antenna systems, we show that the proposed scheduling is a better choice than the greedy scheme in terms of the average BER, feedback complexity, and fairness. The numerical results corroborate our findings.  相似文献   

16.
Dynamic resource allocation is an important means to increase the sum capacity of fading multiple-access channels (MACs). In this paper, we consider vector multi-access channels (channels where each user has multiple degrees of freedom) and study the effect of power allocation as a function of the channel state on the sum capacity (or spectral efficiency) defined as the maximum sum of rates of users per unit degree of freedom at which the users can jointly transmit reliably, in an information-theoretic sense, assuming random directions of received signal. Direct-sequence code-division multiple-access (DS-CDMA) channels and MACs with multiple antennas at the receiver are two systems that fall under the model. Our main result is the identification of a simple dynamic power-allocation scheme that is optimal in a large system, i.e., with a large number of users and a correspondingly large number of degrees of freedom. A key feature of this policy is that, for any user, it depends on the instantaneous amplitude of channel state of that user alone and the structure of the policy is “water-filling.” In the contest of DS-CDMA and in the special case of no fading, the asymptotically optimal power policy of water-filling simplifies to constant power allocation over all realizations of signature sequences; this result verifies the conjecture made in Verdu and Shamai (1999). We study the behavior of the asymptotically optimal water-filling policy in various regimes of number of users per unit degree of freedom and signal-to-noise ratio (SNR). We also generalize this result to multiple classes, i.e., the situation when users in different classes have different average power constraints  相似文献   

17.
A space-time code is proposed that exhibits the highest coding gain among competing full-rate full transmit diversity space-time codes for the two transmit and receive antenna coherent quasi-static fading channel. The proposed code is derived from a layered architecture with real rotation of quadrature amplitude modulation (QAM) information symbols in two dimensions. The existing codes of similar architecture concentrate on application of complex full modulation diversity rotations or asymmetric real rotations. An analytic evaluation illustrates the significant improvement in coding gain achieved with the proposed code. Moreover, the coding gain of the proposed code is independent of its rate. This implies that the proposed code achieves the optimal diversity-multiplexing tradeoff curve for the two transmit antenna system. A stacked extension of the proposed code offers a reduced complexity capacity optimal alternative to the full diversity codes for larger number of transmit antennas. Performance enhancement in several scenarios is verified through simulations.  相似文献   

18.
Multicarrier code division multiple access (MC‐CDMA), is a promising multiplexing technique for future communication systems. In this study, we employ the well‐known Walsh‐Hadamard spreading codes for synchronous downlink transmission of MC‐CDMA systems. The spreading codes allow that the frequency diversity to be efficiently exploited. However, multipath propagation may cause orthogonality among users is distorted, and this distortion produces multiple access interference (MAI). To eliminate this effect, we propose a pre‐filtering‐based MC‐CDMA system which uses a pre‐filtering technique at the transmitter and an equal gain combining (EGC) scheme at the receivers, respectively. Our proposed pre‐filtering technique transforms the transmitted signals so that the MAI can be eliminated, and the EGC scheme weights the signals received from all subcarriers so that channel distortions can be compensated. Furthermore, the proposed technique can calculate the transmitted power over all subcarriers to satisfy the required quality of service of each user and archive MAI‐free. In this paper, performance in terms of bit error rate is analyzed; in comparison with the EGC, orthogonal restoring combining, and maximal ratio combining schemes at receiver, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Optimal spreading sequence design based on PR-QMF theory   总被引:1,自引:0,他引:1  
Based on filter bank theory, a new scheme for spreading sequence generation is proposed for direct sequence code division multiple access (DS-CDMA) systems. It is shown that optimal spreading sequences produce much less multiple access interference (MAI) than Gold codes with comparable lengths  相似文献   

20.
We investigate a new application of the well-known spread spectrum code division multiple access (SS-CDMA) techniques to multimedia services related to the development of the next-generation wireless mobile networks interconnecting with a wireline ATM-based broadband network. Such services allow users to share novel multimedia applications without any geographical restrictions. However, since the mobile radio channel has a fixed limited bandwidth, the traditional SS-CDMA system may not be sufficient to accommodate the variable bit rate (VBR) multimedia services requested by multiple mobile users simultaneously. Moreover, the traffic load at the base station can change dynamically due to the time-varying throughput requirement of these requested multimedia services. To tackle this difficulty, a multicode CDMA (MC-CDMA) technique is proposed to provide multirate multimedia services by varying the number of spreading codes assigned to each user in order to meet its throughput requirement. In MC-CDMA, a spreading code can be used to transmit information at a basic bit rate. Users (video or data) who need higher transmission rates can use multiple codes in parallel. Meanwhile, the maximum available number of codes in the MC-CDMA system is still limited. Hence, a cost-effective dynamic code allocation scheme has then been proposed to dynamically assign an appropriate number of codes to each user for achieving the maximum resource utilization for multiuser multimedia services via the mobile radio channel. Finally, a number of real multimedia titles generated from the well-known MacroMind Director are conducted to evaluate performance  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号