首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we study the $N$ th best relay selection schemes with the consideration that in some case the best relay is unavailable due to the restriction of practical implementation. With amplify-and-forward relaying protocols, the interested $N$ th best relay schemes are investigated over independent and non-identically distributed (i.ni.d) Nakagami- $m$ fading channels. For such opportunistic relaying schemes, we first obtain the closed-form expressions to the probability density function (PDF) and cumulative distribution function (CDF) of the instantaneous end-to-end signal-to-noise ratio with appropriate mathematical proof. Then, with the obtained CDF and PDF, three main measurements are investigated as well as the corresponding explicit solutions, $i.e.$ , outage probability, average symbol error ratio (SER), and ergodic capacity. At the same time, as a byproduct, the corresponding performance metrics over Rayleigh fading are also derived. Finally, the detailed performance comparison analyses are presented under different values of $N$ and different Nakagami- $m$ channel fading severity parameters. The numerical results show that the increase of $N$ incurs the very severe loss in performance such outage probability, SER, and ergodic capacity. However, the loss in performance can be decreased greatly when the $N$ th systems have bigger fading severity factors. The derivations are of significance because the Nakagami- $m$ fading spans via the fading severity parameters a wide range of fading scenarios that are typical in realistic wireless relay networks.  相似文献   

2.
Speed and complexity of a reverse converter are two important factors that affect the performance of a residue number system. In this paper, two efficient reverse converters are proposed for the 4-moduli sets {2 \(^{2n-1}-1\) , 2 \(^{n}\) , 2 \(^{n}+1\) , 2 \(^{n}-1\) } and {2 \(^{2n-1}\) , 2 \(^{2n-1}-1\) , 2 \(^{n}+1\) , 2 \(^{n}-1\) } with 5 \(n\) -bit and 6 \(n\) -bit dynamic range, respectively. The proposed reverse converter for moduli set {2 \(^{2n-1}-1\) , 2 \(^{n}\) , 2 \(^{n}+1\) , 2 \(^{n}-1\) } has been designed based on CRT and New CRT-I algorithms and in two-level structure. Also, an efficient reverse converter for moduli set {2 \(^{2n-1}\) , 2 \(^{2n-1}-1\) , 2 \(^{n}+1\) , 2 \(^{n}-1\) } has been designed by applying New CRT-I algorithm. The proposed reverse converters are based on adders and hence can be simply implemented by VLSI circuit technology. The proposed reverse converters offer less delay and hardware cost when compared with the recently introduced reverse converters for the moduli sets {2 \(^{n}+1\) , 2 \(^{n}-1\) ,2 \(^{n}\) , 2 \(^{2n+1}-1\) } and {2 \(^{n}+1\) , 2 \(^{n}-1\) , 2 \(^{2n}\) , 2 \(^{2n+1}-1\) }.  相似文献   

3.
The median filter is a non-linear filter used for removal of Salt & Pepper noise from images, where each pixel of the image is replaced by the median of its surrounding elements, which is calculated by sorting the data. The complexity of the sorting algorithms used for the median filters are $O(n^2)$ or $O(n)$ , depending on the kernel size. These algorithms were formulated for scalar single processor computers, with few of them successfully adapted and implemented for computers with a parallel architecture. In this paper we greatly improve the results of our earlier work, in which by means of a novel sorting algorithm, based on the Complementary Cumulative Distribution function, with $O(n)$ computational complexity and a highly parallelable structure, we presented a 2D median filter that achieved $O(1)$ or $O(n)$ computational complexity, depending memory constraints. The improvements are twofold: we propose a trade-off between $O(1)$ complexity and $O(n)$ complexity in order to improve the overall throughput; additionally we make use of the Salt & Pepper noise model to improve the image reconstruction quality with a small performance impact. The proposed algorithm have been implemented in three parallel programming models: SIMD Intel, Multicore Intel with SIMD, and SIMT (CUDA), achieving a peak throughput of 27.0, 100.1 and 91.6 megapixels per second respectively.  相似文献   

4.
Secure communication has become more and more important for many modern communication applications. In a secure communication, every pair of users need to have a secure communication channel (each channel is controlled by a server) In this paper, using monotone span programs we devise an ideal linear multi-secret sharing scheme based on connectivity of graphs. In our proposed scheme, we assume that every pair of users, \(p\) and \(q\) , use the secret key \(s_{pq} \) to communicate with each other and every server has a secret share such that a set of servers can recover \(s_{pq} \) if the channels controlled by the servers in this set can connect users, \(p\) and \(q\) . The multi-secret sharing scheme can provide efficiency for key management. We also prove that the proposed scheme satisfies the definition of a perfect multi-secret sharing scheme. Our proposed scheme is desirable for secure and efficient secure communications.  相似文献   

5.
Log-domain Delta-Sigma ( $\Delta \Sigma$ ) modulators are attractive for implementing analog-to-digital (A/D) converters (ADCs) targeting low-power low-voltage applications. Previously reported log-domain $\Delta \Sigma$ modulators were limited to 1-bit quantization and, hence, could not benefit from the advantages associated with multibit quantization (namely, reduced in-band quantization noise, and increased modulator stability). Unlike classical $\Delta \Sigma$ modulators, directly extending a log-domain $\Delta \Sigma$ modulator with a 1-bit quantizer to a log-domain $\Delta \Sigma$ modulator with a multibit quantizer is challenging, in terms of CMOS circuit implementation. Additionally, the realization of log-domain $\Delta \Sigma$ modulators targeting high-resolution applications necessitates minimization of distortion and noise in the log-domain loop-filter. This paper discusses the challenges of multibit quantization and digital-to-analog (D/A) conversion in the log-domain, and presents a novel multibit log-domain $\Delta \Sigma$ modulator, practical for CMOS implementation. SIMULINK models of log-domain $\Delta \Sigma$ modulator circuits are proposed, and the effects of various circuit non-idealities are investigated, including the effects of log-domain compression–expansion mismatch. Furthermore, this paper proposes novel low-distortion log-domain analog blocks suitable for high-resolution analog-to-digital (A/D) conversion applications. Circuit simulation results of a proposed third-order 3-bit class AB log-domain $\Delta \Sigma$ loop-filter demonstrate 10.4-bit signal-to-noise-and-distortion-ratio (SNDR) over a 10 kHz bandwidth with a $0.84\,V_{pp}$ differential signal input, while operating from a 0.8 V supply and consuming a total power of $35.5\,\upmu \hbox {W}.$   相似文献   

6.
A Cognitive Radio must sense the channel to detect spectrum holes. To this end, it senses the channel for $T_S$ and transmits its data for $N T_S$ , if the channel is not occupied by Primary User. It is expected that the more frequent arrivals of PU, characterized by the arrival rate $\lambda $ , provides CR with less opportunity. The aim of this paper is two-fold: analysis of the interaction between $N$ and $\lambda $ , as well as the access time of CR on the one hand and study of the possible benefits a variable decreasing modulation order might provide for CR on the other. In both cases, data rate of CR and the interference it causes for PU are considered as the performance measures.  相似文献   

7.
This paper presents the fractional order model of a nonlinear autonomous continuous-time difference-differential equation with only one variable. Numerical simulation results of the fractional order model demonstrate the existence of chaos when system order $q\ge 0.2$ . Values of the delay time $\tau $ in which chaotic behavior is observed at system order $q$ are quantitatively defined using the largest Lyapunov exponents obtained from the output time series.  相似文献   

8.
A continuous-time (CT) sigma-delta modulator (SDM) for condenser microphone readout interfaces is presented in this paper. The CT SDM can accommodate a single-ended input and has high input impedance, so that it can be directly driven by a single-ended condenser microphone. A current-sensing boosted OTA-C integrator with capacitive feedforward compensation is employed in the CT SDM to achieve high input impedance and high linearity with low power consumption. Fabricated in a \(0.35\) - \(\upmu\) m complementary metal-oxide-semiconductor (CMOS) process, a circuit prototype of the CT SDM achieves a peak signal-to-noise-and-distortion ratio of 74.2 dB, with 10-kHz bandwidth and \(801\) - \(\upmu\) W power consumption.  相似文献   

9.
In this study, we investigate the outage capacity of a cooperative relaying based cognitive radio network in slow fading channel. Our network scenario consists of a primary transmitter (PT) and primary receiver (PR) as well as a group of \(M\) secondary transmitter (ST)–receiver (SR) pairs. We grouped STs into active and inactive. Only one active ST may transmit data at a time in parallel with the PT satisfying a predefined interference threshold \(I_{th}\) to the PR. Due to fading/shadowing or interference caused by ST to the PR, primary user (PU) may fail to achieve its target rate \(R_{{\textit{PT}}}\) over a direct link. To overcome this, we can boost up primary capacity by using inactive STs as cooperative relay (Re) nodes for the PU. In addition, one of the inactive STs that achieves \(R_{{\textit{PT}}}\) will be act as a best decode-and-forward relay to forward the primary information. In this paper, a closed-form expression of the outage capacity is derived. Results show that outage capacity improves with increasing cooperative nodes as well as when the active ST is located farther away from the PR.  相似文献   

10.
This paper investigates the problem of \(L_1\) observer design for positive switched systems. Firstly, a new kind of positive \(L_1\) observer is proposed for positive switched linear delay-free systems with observable and unobservable subsystems. Based on the average dwell time approach, a sufficient condition is proposed to ensure the existence of the positive \(L_1\) observer. Under the condition obtained, the estimated error converges to zero exponentially, and the \(L_1\) -gain from the disturbance input to the estimated error is less than a prescribed level. Then the proposed design result is extended to positive switched systems with mixed time-varying delays, where the mixed time-varying delays are presented in the form of discrete delay and distributed delay. Finally, two numerical examples are given to demonstrate the feasibility of the obtained results.  相似文献   

11.
Mobile phones with embedded sensors have been applied in various collaborative sensing applications. To encourage mobile phone users to perform collaborative sensing, the data demanders usually pay mobile phone users for required data. In this paper, we study the Minimum Payment of Attaining the Required Data with mobile phones (MPARD) problem in collaborative sensing network: given sensing regions \(R = \{R_1, R_2, \ldots , R_m\}\) , the set of requisite data \(D_i\) for each sensing region \(R_i\) and a set of mobile phones \(M\) , the \(MPARD\) problem studies how to select mobile phones to obtain all the required data such that the data demanders’ total payment to mobile phone users is minimized. In reality, some systems need the fresh sensing data from mobile phones at each pre-determined time slot, and others don’t require the real-time data and the sensing data from previous time slots is also deemed useful. Based on the above two different requirements of data timeliness, we first define two subproblems derived from \(MPARD\) problem: \(MPARD_t\) and \(MPARD_p\) . After that, for each subproblem, we propose an approximation algorithm for the situation where the trajectories of mobile phones are determinate and a heuristic for the situation where trajectories are unknown. Simulation results demonstrate that our algorithms are efficient.  相似文献   

12.
The routing and wavelength assignment (RWA) problem, known to be an NP-complete problem, seeks to optimally establish routes and adequate wavelengths for the requested connections according to an objective function. This paper presents the use of a novel approach based on a differential evolution (DE) algorithm to the RWA problem in wavelength-routed dense division multiplexing (DWDM) optical networks. The proposed DE-RWA algorithm is modeled to optimize not only the network wavelength requirement ( $ NWR $ , which is the minimum number of wavelengths needed to fulfill traffic demand) but also the average path length ( $ APL $ ). We present the impact of the control parameters of the DE algorithm on the improvement of system’s performance. Additionally, we present two strategies to improve the efficiency of the algorithm, knowing as the disjoint cut-set paths (DCS-P) algorithm and the use of a random mutation ( $ random -M$ ) parameter for DE. The proposed approach is evaluated for test bench optical networks with up to 40 nodes. Experiments show that the DE-RWA algorithm obtains results that equal the $ NWR $ lower bound for networks with and without wavelength conversion capability, whereas reduce the $ APL $ . The performance of the DE-based approach is compared against results obtained with the particle swarm optimization (PSO) and genetic algorithm (GA) models, showing that the DE-RWA outperform those algorithms. The presented DE-RWA model is simple to implement and could also be extended by adding other features such as impairment-aware, energy efficient, survivability among others in optical networks.  相似文献   

13.
This paper is concerned with the problem of robust $\mathcal{H}_{2}$ and $\mathcal{H}_{\infty}$ filter design for discrete-time linear time-invariant systems with polytopic parameter uncertainties. Less conservative robust $\mathcal{H}_{2}$ and $\mathcal{H}_{\infty}$ filter design procedures are proposed in terms of single-parameter minimization problems with linear matrix inequality constraints. To this end, we generalize the filter structures available in the literature to date in such a way that the filter’s next state is built by summing the filter’s states over several samples from the past to the present. For stability of the filtering error system, the homogeneous polynomial parameter-dependent Lyapunov functions are employed. Finally, illustrative examples are given to demonstrate the merits of the proposed methods.  相似文献   

14.
This paper presents a wide tuning range CMOS voltage controlled oscillator (VCO) with a high-tunable active inductor circuit. In this VCO circuit, the coarse frequency is achieved by tuning the integrated active inductor circuit. The VCO circuit is designed in 0.18  \(\upmu \hbox {m}\) CMOS process and simulated with Cadence Spectra. The simulation results show the frequency tuning range from 120 MHz to 2 GHz resulting in a tuning range of 94 %. The phase noise variation is from \(-\) 80 to \(-\) 90 dBc/Hz at a 1 MHz frequency offset, and output power variation is from \(-\) 4.7 to \(+\) 11.5 dBm. The active inductor power consumption is 2.2 mW and the total power dissipation is 7 mW from a 1.8 V DC power supply. By comparing the proposed VCO circuit with the general VCO topology, the results show that this VCO architecture by using the novel, high-tunable and low power active inductor circuit, presents a better performance regarding low chip size, low power consumption, high tuning range and high output power.  相似文献   

15.
Orthogonal frequency-division multiplexing (OFDM) has lately gained a great deal of attention and is considered as a strong candidate for many next-generation wireless communication systems. However, OFDM is very sensitive to nonlinear effects due to the high peak-to-average power ratio (PAPR) owned by the transmitted signals and does not show robustness to spectral null channels. This paper proposes a novel BPSK OFDM system based on Haar wavelet transformation. The Haar wavelet transformation operates decomposition over the data symbol sequence after binary-to-complex mapping shows that half of the data symbols are zeros and the rest are either ${\sqrt{2}}$ or ${-\sqrt{2}}$ . Then, we have the PAPR reduced by ${10\log_{10} 2\approx 3}$ ?dB at most, compared with the conventional OFDM system. We also propose a novel decoding algorithm for the proposed OFDM system to show robustness to spectral null channels, and derive the bit error rate (BER) performance in theory from unbalanced QPSK modulation. Finally, we compare BER performance of our proposed OFDM with the conventional OFDM over different channels to show the excellent performance of our proposed OFDM system.  相似文献   

16.
A two-tiered architecture with resource-rich master nodes at the upper tier and resource-poor sensor nodes at the lower tier is expected to be adopted in large scale sensor networks. In a hostile environment, adversaries are more motivated to compromise the master nodes to break the authenticity and completeness of query results, whereas it is lack of light and secure query processing protocol in tiered sensor networks at present. In this paper, we study the problem of verifiable fine-grained top- $k$ queries in two-tiered sensor networks, and propose a novel verification scheme, which is named Verification Scheme for Fine-grained Top- $k$ Queries (VSFTQ). To make top- $k$ query results verifiable, VSFTQ establishes relationships among data items of each sensor node using their orders, which are encrypted together with the scores of the data items and the interested time epoch number using distinct symmetric keys kept by each sensor node and the network owner. Both theoretical analysis and simulation results show that VSFTQ can not only ensure high probability of detecting forged and/or incomplete query results, but also significantly decrease the amount of verification information when compared with existing schemes.  相似文献   

17.
A 4-bit active phase shifter for millimeter-wave phased arrays is presented in this brief. The proposed phase shifter has achieved a phase-shifting range of $360^{\circ }$ with a $22.5^{\circ }$ resolution over 40 to 50-GHz. Thanks to the careful dimension designs of digitally controlled gain stage in the programmable weighted combiner, the active phase shifter achieves root-mean-square phase and gain errors of $5^{\circ }$ and 1.25-dB at 45-GHz, respectively. The measurement results also show that the input and output return losses are better than 7-dB from 40 to 50-GHz. The whole chip dissipates only 10.7-mA from 1.2-V supply excluding output driven buffer.  相似文献   

18.
A fully integrated 0.18- \(\upmu \hbox {m}\) CMOS LC-tank voltage-controlled oscillator (VCO) suitable for low-voltage and low-power S-band wireless applications is proposed in this paper. In order to meet the requirement of low voltage applications, a differential configuration with two cross-coupled pairs by adopting admittance-transforming technique is employed. By using forward-body-biased metal oxide semiconductor field effect transistors, the proposed VCO can operate at 0.4 V supply voltage. Despite the low power supply near threshold voltage, the VCO achieves wide tuning range by using a voltage-boosting circuit and the standard mode PMOS varactors in the proposed oscillator architecture. The simulation results show that the proposed VCO achieves phase noise of \(-\) 120.1 dBc/Hz at 1 MHz offset and 39.3 % tuning range while consuming only \(594~\upmu \hbox {W}\) in 0.4 V supply. Figure-of-merit with tuning range of the proposed VCO is \(-\) 192.1 dB at 3 GHz.  相似文献   

19.
The electronic structures of Co-based potential thermoelectric (TE) oxides, including $\hbox{Ca}_3\hbox{Co}_4\hbox{O}_9$ and $\hbox{Bi}_{2}\hbox{Sr}_{2}\hbox{Co}_2\hbox{O}_{y}$ (y = 8 + δ) single crystals and polycrystalline $\hbox{Ca}_3\hbox{Co}_2\hbox{O}_6$ , have been investigated by employing soft x-ray absorption spectroscopy (XAS) and photoemission spectroscopy (PES). Co 2p XAS measurements show that Co ions are nearly trivalent ( $\hbox{Co}^{3+}$ ) in all of these Co-based TE oxides with a small mixture of $\hbox{Co}^{4+}$ ions in $\hbox{Bi}_{2}\hbox{Sr}_{2}\hbox{Co}_2\hbox{O}_{y}$ . Valence-band PES and O 1s XAS measurements show that the occupied Co 3d states are located at the top of the valence bands and that the lowest unoccupied states have the primarily Co 3d character, respectively. These findings suggest the importance of the Co 3d electronic structures in determining TE properties of these Co-based oxides.  相似文献   

20.
Packet delay control in mobile ad hoc networks (MANETs) is critical to support delay-sensitive applications in such networks. By combining erasure coding and packet redundancy techniques, this paper proposes a general two-hop relay algorithm 2HR- \((x,\tau ,f)\) for a flexible control of packet delivery delay in MANETs, where a group of x packets in source node are first encoded into \(x\cdot \tau\) encoded packets based erasure coding, and each encoded packet is then delivered to at most f distinct relay nodes (f-cast) that will help to forward the encoded packet to destination node. To understand the delay performance in a 2HR- \((x,\tau ,f)\) MANET, we then develop a discrete time multi-dimensional Markov chain model to depict the packet delivery process in the network, based on which closed-form results on mean and variance of packet delivery delay are further derived. Finally, extensive simulation and theoretical results are provided to illustrate the efficiency of our delay models as well as the capability of the 2HR- \((x,\tau ,f)\) algorithm in delay control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号