首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
Wireless sensor network (WSN) consists of densely distributed nodes that are deployed to observe and react to events within the sensor field. In WSNs, energy management and network lifetime optimization are major issues in the designing of cluster-based routing protocols. Clustering is an efficient data gathering technique that effectively reduces the energy consumption by organizing nodes into groups. However, in clustering protocols, cluster heads (CHs) bear additional load for coordinating various activities within the cluster. Improper selection of CHs causes increased energy consumption and also degrades the performance of WSN. Therefore, proper CH selection and their load balancing using efficient routing protocol is a critical aspect for long run operation of WSN. Clustering a network with proper load balancing is an NP-hard problem. To solve such problems having vast search area, optimization algorithm is the preeminent possible solution. Spider monkey optimization (SMO) is a relatively new nature inspired evolutionary algorithm based on the foraging behaviour of spider monkeys. It has proved its worth for benchmark functions optimization and antenna design problems. In this paper, SMO based threshold-sensitive energy-efficient clustering protocol is proposed to prolong network lifetime with an intend to extend the stability period of the network. Dual-hop communication between CHs and BS is utilized to achieve load balancing of distant CHs and energy minimization. The results demonstrate that the proposed protocol significantly outperforms existing protocols in terms of energy consumption, system lifetime and stability period.  相似文献   

3.
Energy conserving of sensor nodes is the most crucial issue in the design of wireless sensor networks (WSNs). In a cluster based routing approach, cluster heads (CHs) cooperate with each other to forward their data to the base station (BS) via multi-hop routing. In this process, CHs closer to the BS are burdened with heavier relay traffic and tend to die prematurely which causes network partition is popularly known as a hot spot problem. To mitigate the hot spot problem, in this paper, we propose unequal clustering and routing algorithms based on novel chemical reaction optimization (nCRO) paradigm, we jointly call these algorithms as novel CRO based unequal clustering and routing algorithms (nCRO-UCRA). In clustering, we partition the network into unequal clusters such that smaller size clusters near to the sink and larger size clusters relatively far away from the sink. For this purpose, we develop the CH selection algorithm based on nCRO paradigm and assign the non-cluster head sensor nodes to the CHs based on derived cost function. Then, a routing algorithm is presented which is also based on nCRO based approach. All these algorithms are developed with the efficient schemes of molecular structure encoding and novel potential energy functions. The nCRO-UCRA is simulated extensively on various scenarios of WSNs and varying number of sensors and the CHs. The results are compared with some existing algorithms and original CRO based algorithm called as CRO-UCRA to show the superiority in terms of various performance metrics like residual energy, network lifetime, number of alive nodes, data packets received by the BS and convergence rate.  相似文献   

4.
A magnanimous number of collaborative sensor nodes make up a Wireless Sensor Network (WSN). These sensor nodes are outfitted with low-cost and low-power sensors. The routing protocols are responsible for ensuring communications while considering the energy constraints of the system. Achieving a higher network lifetime is the need of the hour in WSNs. Currently, many network layer protocols are considering a heterogeneous WSN, wherein a certain number of the sensors are rendered higher energy as compared to the rest of the nodes. In this paper, we have critically analysed the various stationary heterogeneous clustering algorithms and assessed their lifetime and throughput performance in mobile node settings also. Although many newer variants of Distributed Energy-Efficiency Clustering (DEEC) scheme execute proficiently in terms of energy efficiency, they suffer from high system complexity due to computation and selection of large number of Cluster Heads (CHs). A protocol in form of Cluster-head Restricted Energy Efficient Protocol (CREEP) has been proposed to overcome this limitation and to further improve the network lifetime by modifying the CH selection thresholds in a two-level heterogeneous WSN. Simulation results establish that proposed solution ameliorates in terms of network lifetime as compared to others in stationary as well as mobile WSN scenarios.  相似文献   

5.
The advances in the size, cost of deployment, and user‐friendly interface of wireless sensor devices have given rise to many wireless sensor network (WSN) applications. WSNs need to use protocols for transmitting data samples from event regions to sink through minimum cost links. Clustering is a commonly used method of data aggregation in which nodes are organized into groups to reduce energy consumption. Nonetheless, cluster head (CH) has to bear an additional load in clustering protocols to organize different activities within the cluster. Proper CH selection and load balancing using efficient routing protocol is therefore a critical aspect for WSN's long‐term operation. In this paper, a threshold‐sensitive energy‐efficient cluster‐based routing protocol based on flower pollination algorithm (FPA) is proposed to extend the network's stability period. Using FPA, multihop communication between CHs and base station is used to achieve optimal link costs for load balancing distant CHs and energy minimization. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in terms of energy consumption, stability period, and system lifetime.  相似文献   

6.
Radhika  M.  Sivakumar  P. 《Wireless Networks》2021,27(1):27-40

This article presents the design, analyses and implementation of the novel routing protocol for energy optimization based on LEACH for WSN. Network Lifetime is the major problem in various routing protocols used in WSN. In order to overcome that problem, our proposed routing protocol is developed, which is a combination of Micro Genetic algorithm with LEACH protocol. Our proposed µGA-LEACH protocol, strengthen the cluster head (CH) selection and also reduce the energy consumption of the network when compared to existing protocols. This paper shows the improvement of network lifetime and energy consumption with the optimal CH selection based on a micro genetic algorithm and also compared the results with an existing hierarchical routing protocol like LEACH, LEACH-C, LEACH GA and GADA LEACH routing protocol with various packet sizes, and initial energy.

  相似文献   

7.
The technical growth in the field of the wireless sensor networks (WSNs) has resulted in the process of collecting and forwarding the massive data between the nodes, which was a major challenge to the WSNs as it is associated with greater energy loss and delay. This resulted in the establishment of a routing protocol for the optimal selection of the multipath to progress the routing in WSNs. This paper proposes an energy‐efficient routing in WSNs using the hybrid optimization algorithm, cat–salp swarm algorithm (C‐SSA), which chooses the optimal hops in progressing the routing. Initially, the cluster heads (CHs) are selected using the low‐energy adaptive clustering hierarchy (LEACH) protocol that minimizes the traffic in the network. The CHs are engaged in the multihop routing, and the selection of the optimal paths is based on the proposed hybrid optimization, which chooses the optimal hops based on the energy constraints, such as energy, delay, intercluster distance, intracluster distance, link lifetime, delay, and distance. The simulation results prove that the proposed routing protocol acquired minimal delay of 0.3165 with 50 nodes and two hops, maximal energy of 0.1521 with 50 nodes and three hops, maximal number of the alive nodes as 39 with 100 nodes and two hops, and average throughput of 0.9379 with 100 nodes and three hops.  相似文献   

8.
Among the many multipath routing protocols, the AOMDV is widely used in highly dynamic ad hoc networks because of its generic feature. Since the communicating nodes in AOMDV are prone to link failures and route breaks due to the selection of multiple routes between any source and destination pair based on minimal hop count which does not ensure end-to-end reliable data transmission. To overcome such problems, we propose a novel node disjoint multipath routing protocol called End-to-End Link Reliable Energy Efficient Multipath Routing (E2E-LREEMR) protocol by extending AOMDV. The E2E-LREEMR finds multiple link reliable energy efficient paths between any source and destination pair for data transmission using two metrics such as Path-Link Quality Estimator and Path-Node Energy Estimator. We evaluate the performance of E2E-LREEMR protocol using NS 2.34 with varying network flows under random way-point mobility model and compare it with AOMDV routing protocol in terms of Quality of Service metrics. When there is a hike in network flows, the E2E-LREEMR reduces 30.43 % of average end-to-end delay, 29.44 % of routing overhead, 32.65 % of packet loss ratio, 18.79 % of normalized routing overhead and 12.87 % of energy consumption. It also increases rather 10.26 % of packet delivery ratio and 6.96 % of throughput than AOMDV routing protocol.  相似文献   

9.
Energy conservation and fault tolerance are two critical issues in the deployment of wireless sensor networks (WSNs). Many cluster‐based fault‐tolerant routing protocols have been proposed for energy conservation and network lifetime maximization in WSNs. However, these protocols suffer from high frequency of re‐clustering as well as extra energy consumption to tolerate failures and consider only some very normal parameters to form clusters without any verification of the energy sufficiency for data routing. Therefore, this paper proposes a cluster‐based fault‐tolerant routing protocol referred as CFTR. This protocol allows higher energy nodes to become Cluster Heads (CHs) and operate multiple rounds to diminish the frequency of re‐clustering. Additionally, for the sake to get better energy efficiency and balancing, we introduce a cost function that considers during cluster formation energy cost from sensor node to CH, energy cost from CH to sink, and another significant parameter, namely, number of cluster members in previous round. Further, the proposed CFTR takes care of nodes, which have no CH in their communication range. Also, it introduces a routing algorithm in which the decision of next hop CH selection is based on a cost function conceived to select routes with sufficient energy for data transfer and distribute uniformly the overall data‐relaying load among the CHs. As well, a low‐overhead algorithm to tolerate the sudden failure of CHs is proposed. We perform extensive simulations on CFTR and compare their results with those of two recent existing protocols to demonstrate its superiority in terms of different metrics.  相似文献   

10.
In wireless sensor networks, the routing control overhead could be large because multiple relays are involved in the routing operation. In order to mitigate this problem, a promising solution is to use tier‐based anycast protocols. The main shortcoming of these protocols is that they can consume a much greater amount of energy as compared with other competing protocols using deterministic routing. In this paper, we analyze, in depth, a tier‐based anycast protocol and develop a new technique of improving network lifetime. Our solution is guided by our analytic framework that consists of subtiering and a new forwarding protocol called ‘scheduling controlled anycast protocol’. We formulate the problem for finding an optimal duty cycle for each tier with a delay constraint as a minimax optimization problem and find its solution, which we show is unique. From the analytical results, we find that the network lifetime can be significantly extended by allocating a different duty cycle adaptively for each tier under a delay constraint. Through simulations, we verify that our duty cycle control algorithm enhances the network lifetime by approximately 70% in comparison with an optimal homogeneous duty cycle allocation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Internet of things (IoT) applications based on wireless sensor networks (WSNs) have recently gained vast momentum. These applications vary from health care, smart cities, and military applications to environmental monitoring and disaster prevention. As a result, energy consumption and network lifetime have become the most critical research area of WSNs. Through energy-efficient routing protocols, it is possible to reduce energy consumption and extend the network lifetime for WSNs. Using hybrid routing protocols that incorporate multiple transmission methods is an effective way to improve network performance. This paper proposes modulated R-SEP (MR-SEP) for large-scale WSN-based IoT applications. MR-SEP is based on the well-known stable election protocol (SEP). MR-SEP defines three initial energy levels for the nodes to improve the network energy distribution and establishes multi-hop communication between the cluster heads (CHs) and the base station (BS) through relay nodes (RNs) to reduce the energy consumption of the nodes to reach the BS. In addition, MR-SEP reduces the replacement frequency of CHs, which helps increase network lifetime and decrease power consumption. Simulation results show that MR-SEP outperforms SEP, LEACH, and DEEC protocols by 70.2%, 71.58%, and 74.3%, respectively, in terms of lifetime and by 86.53%, 86.68%, and 86.93% in terms of throughput.  相似文献   

12.
Designing an energy efficient and durable wireless sensor networks (WSNs) is a key challenge as it personifies potential and reactive functionalities in harsh antagonistic environment at which wired system deployment is completely infeasible. Majority of the clustering mechanisms contributed to the literature concentrated on augmenting network lifetime and energy stability. However, energy consumption incurred by cluster heads (CHs) are high and thereby results in minimized network lifetime and frequent CHs selection. In this paper, a modified whale-dragonfly optimization algorithm and self-adaptive cuckoo search-based clustering strategy (MWIDOA-SACS) is proposed for sustaining energy stability and augment network lifetime. In specific, MWIDOA-SACS is included for exploiting the fitness values that aids in determining two optimal nodes that are selected as optimal CH and cluster router (CR) nodes in the network. In MWIDOA, the search conduct of dragon flies is completely updated through whale optimization algorithm (WOA) for preventing load balancing at CHs. It minimized the overhead of CH by adopting CHs and CR for collecting information from cluster members and transmitting the aggregated data from CHs to the base station (BS). It included self-adaptive cuckoo search (SACS) for achieving sink mobility using radius, energy stability, received signal strength, and throughput for achieving optimal data transmission process after partitioning the network into unequal clusters. Simulation experiments of the proposed MWIDOA-SACS confirmed better performance in terms of total residual energy by 21.28% and network lifetime by 26.32%, compared to the competitive CH selection strategies.  相似文献   

13.
The localized operation and stateless features of geographic routing make it become an attractive routing scheme for wireless sensor network (WSN). In this paper, we proposed a novel routing protocol, hybrid beaconless geographic routing (HBGR), which provides different mechanisms for different packets. Based on the requirement of application on latency, we divide the packets of WSN into delay sensitive packets and normal packets. HBGR uses two kinds of Request-To-Send/Clear-To-Send handshaking mechanisms for delay sensitive packets and normal packets, and assigns them different priority to obtain the channel. The simplified analysis is given, which proves that delay sensitive packets have lower latency and higher priority to obtain the channel than normal packets. Moreover, forwarding area division scheme is proposed to optimize the forwarder selection. Simulation results show that HBGR achieves higher packet delivery ratio, lower End-to-End latency and lower energy consumption than existing protocols under different packet generation rates in stationary and mobility scenario. Besides, compared with normal packets, delay sensitive packets have at least 10 % (9 %) improvement in terms of End-to-End latency. The improvement increases with the increasing of packet generation rate, and achieves 58 % (73 %) when the packet generation rate is 24 packets per second in stationary (mobility) scenario.  相似文献   

14.
Due to inherent issue of energy limitation in sensor nodes, the energy conservation is the primary concern for large‐scale wireless sensor networks. Cluster‐based routing has been found to be an effective mechanism to reduce the energy consumption of sensor nodes. In clustered wireless sensor networks, the network is divided into a set of clusters; each cluster has a coordinator, called cluster head (CH). Each node of a cluster transmits its collected information to its CH that in turn aggregates the received information and sends it to the base station directly or via other CHs. In multihop communication, the CHs closer to the base station are burdened with high relay load; as a result, their energy depletes much faster as compared with other CHs. This problem is termed as the hot spot problem. In this paper, a distributed fuzzy logic‐based unequal clustering approach and routing algorithm (DFCR) is proposed to solve this problem. Based on the cluster design, a multihop routing algorithm is also proposed, which is both energy efficient and energy balancing. The simulation results reinforce the efficiency of the proposed DFCR algorithm over the state‐of‐the‐art algorithms, ie, energy‐aware fuzzy approach to unequal clustering, energy‐aware distributed clustering, and energy‐aware routing algorithm, in terms of different performance parameters like energy efficiency and network lifetime.  相似文献   

15.
The improvement of sensor networks’ lifetime has been a major research challenge in recent years. This is because sensor nodes are battery powered and may be difficult to replace when deployed. Low energy adaptive clustering hierarchical (LEACH) routing protocol was proposed to prolong sensor nodes lifetime by dividing the network into clusters. In each cluster, a cluster head (CH) node receives and aggregates data from other nodes. However, CH nodes in LEACH are randomly elected which leads to a rapid loss of network energy. This energy loss occurs when the CH has a low energy level or when it is far from the BS. LEACH with two level cluster head (LEACH-TLCH) protocol deploys a secondary cluster head (2CH) to relieve the cluster head burden in these circumstances. However, in LEACH-TLCH the optimal distance of CH to base station (BS), and the choicest CH energy level for the 2CH to be deployed for achieving an optimal network lifetime was not considered. After a survey of related literature, we improved on LEACH-TLCH by investigating the conditions set to deploy the 2CH for an optimal network lifetime. Experiments were conducted to indicate how the 2CH impacts on the network at different CH energy levels and (or) CH distance to BS. This, is referred to as factor-based LEACH (FLEACH). Investigations in FLEACH show that as CHs gets farther from the BS, the use of a 2CH extends the network lifetime. Similarly, an increased lifetime also results as the CH energy decreases when the 2CH is deployed. We further propose FLEACH-E which uses a deterministic CH selection with the deployment of 2CH from the outset of network operation. Results show an improved performance over existing state-of-the-art homogeneous routing protocols.  相似文献   

16.
Energy conservation of the sensor nodes is the most important issue that has been studied extensively in the design of wireless sensor networks (WSNs). In many applications, the nodes closer to the sink are overburdened with huge traffic load as the data from the entire region are forwarded through them to reach the sink. As a result, their energy gets exhausted quickly and the network is partitioned. This is commonly known as hot spot problem. Moreover, sensor nodes are prone to failure due to several factors such as environmental hazards, battery exhaustion, hardware damage and so on. However, failure of cluster heads (CHs) in a two tire WSN is more perilous. Therefore, apart from energy efficiency, any clustering or routing algorithm has to cope with fault tolerance of CHs. In this paper, we address the hot spot problem and propose grid based clustering and routing algorithms, combinedly called GFTCRA (grid based fault tolerant clustering and routing algorithms) which takes care the failure of the CHs. The algorithms follow distributed approach. We also present a distributed run time management for all member sensor nodes of any cluster in case of failure of their CHs. The routing algorithm is also shown to tolerate the sudden failure of the CHs. The algorithms are tested through simulation with various scenarios of WSN and the simulation results show that the proposed method performs better than two other grid based algorithms in terms of network lifetime, energy consumption and number of dead sensor nodes.  相似文献   

17.
Routing protocols for Wireless Sensor Networks (WSN) are designed to select parent nodes so that data packets can reach their destination in a timely and efficient manner. Typically neighboring nodes with strongest connectivity are more selected as parents. This Greedy Routing approach can lead to unbalanced routing loads in the network. Consequently, the network experiences the early death of overloaded nodes causing permanent network partition. Herein, we propose a framework for load balancing of routing in WSN. In-network path tagging is used to monitor network traffic load of nodes. Based on this, nodes are identified as being relatively overloaded, balanced or underloaded. A mitigation algorithm finds suitable new parents for switching from overloaded nodes. The routing engine of the child of the overloaded node is then instructed to switch parent. A key future of the proposed framework is that it is primarily implemented at the Sink and so requires few changes to existing routing protocols. The framework was implemented in TinyOS on TelosB motes and its performance was assessed in a testbed network and in TOSSIM simulation. The algorithm increased the lifetime of the network by 41 % as recorded in the testbed experiment. The Packet Delivery Ratio was also improved from 85.97 to 99.47 %. Finally a comparative study was performed using the proposed framework with various existing routing protocols.  相似文献   

18.
With respect to the inherent advantages of multipath routing, nowadays multipath routing is known as an efficient mechanism to provide even network resource utilization and efficient data transmission in different networks. In this context, several multipath routing protocols have been developed over the past years. However, due to the time-varying characteristics of low-power wireless communications and broadcast nature of radio channel, performance benefits of traffic distribution over multiple paths in wireless sensor networks are less obvious. Motivated by the drawbacks of the existing multipath routing protocols, this paper presents an Interference-Minimized MultiPath Routing protocol (IM2PR) which aims to discover a sufficient number of minimum interfering paths with high data transmission quality between each event area and sink node in order to provide efficient event data packet forwarding in event-driven wireless sensor networks. Extensive performance evaluations show that IM2PR presents improvements over the Micro Sensor Multipath Routing Protocol and Energy-Efficient data Routing Protocol as follows: 50 and 70 % in term of packet reception ratio at the sink, 44 and 80 % in term of goodput, 33 and 40 % in term of packet delivery latency, 40 and 57 % in term of energy consumption, 50 and 60 % in term of packet delivery overhead.  相似文献   

19.
This paper addresses the energy efficiency of data collection based on a concentric chain clustering topology for wireless sensor networks (WSNs). To conserve the energy dissipation of nodes spent in data routing, the paper attempts to take advantage of the two opportunities: (a) the impact of the relative positions of wireless nodes to the base station on the energy efficiency of the routing chain within each cluster; (b) the effect of the varying‐sized chains on the selection rule of cluster heads (CHs). To establish an energy‐efficient chain to connect all the nodes in a cluster, the paper proposes a principal vector projection approach, which takes into account both the position of each node and that of the base station, to determine the order to which a node can be linked into the chain in order to reduce the energy requirement of the chain. Since the CH selection rules in the concentric chains are mutually independent, solely based on their self‐cluster sizes, the multi‐hop path passing through all the CHs will consist of longer links and thus consume a significant fraction of the total energy. Thus, in order to suppress the effect of the unequal cluster sizes on decreasing the energy efficiency of the multi‐hop path of CHs, the paper offers an average‐cluster‐size‐based rule (ACSB) for each cluster in order to adapt the CH selection with both the number of active nodes in the current cluster and the average value of all cluster sizes. With these two proposed schemes, an adaptive concentric chain‐based routing algorithm is proposed which enables nodes to collaboratively reduce the energy dissipation incurred in gathering sensory data. By computer simulation, the results demonstrate that the proposed algorithm performs better than other similar protocols in terms of energy saved and lifetime increased capabilities for WSNs which deploy random sensor nodes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Vehicular ad hoc network (VANET) is most significant for supporting intelligent transportation system (ITS)-based technologies, but it gets hurdled by sparse distribution of vehicles on highways, and dynamically challenging topology that arises due to increase in traffic. Hence, energy stable and optimized cluster construction maximizes the network lifetime. In this paper, Hybrid Prairie Dogs and Beluga Whale Optimization-based Node Clustering (HPDBWOA-NC) mechanism is proposed with the parameters of highway route, node velocity, number of vehicular nodes, and communication for achieving stable cluster construction in VANETs. It is proposed with the balanced exploration and exploitation potential of Prairie Dog Optimization Algorithm (PDOA) and Beluga Whale Optimization Algorithm (BWOA) for establishing optimal clusters that increase the network stability during the routing process. It integrated the exploration and exploitation capabilities of PDOA and BWOA and confirmed better optimized clusters which confirmed reliable data delivery by preventing the issue of premature convergence. It constructed clusters and selected cluster heads (CHs) depending on the fitness factors of energy, interdistance between vehicles, communication range, and vehicular density. The results of the proposed HPDBWOA-NC generated optimal number of CHs in the network which is comparatively 34.21% better than the benchmarked mechanisms. The mean throughput and packet delivery ratio (PDR) achieved by the proposed HPDBWOA-NC are identified to be significantly improved by 25.48% and 28.91% better than the investigated metaheuristic clustering protocols. The statistical study also guaranteed an increased factor of 81, during the processing of optimizing the clusters during the employment of ITS applications in VANETs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号