首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the problem of global stabilization by state feedback and output feedback for a class of time-delay nonlinear systems that are dominated by a triangular system satisfying linear growth conditions. By solving the Lyapunov equation and constructing the appropriate Lyapunov-Krasovskii functionals (LKF), the linear and memoryless state feedback controller and output feedback controller making the closed-loop system globally asymptotically stable (GAS) are explicitly constructed respectively. Comparing our design scheme with the backstepping method which has been widely used to deal with strictly feedback nonlinear systems, our design scheme is much simpler and more efficient. An example is given to show that the proposed design procedures are very simple and efficient.  相似文献   

2.
Systems are considered which can be reduced to a regular form and possess an invariant manifold such that the restriction of the system to the manifold is globally asymptotically stable (GAS). We construct a feedback which renders the manifold globally attracting. It was proved that in this situation boundedness of all orbits is necessary and sufficient for the control system to be GAS. A Lyapunov type condition for the latter property adapted to the situation in question is given. Results of Andreini, Bacciotti, and Stefani are shown to be a special case of our result.  相似文献   

3.
Global finite-time stabilization of a class of uncertain nonlinear systems   总被引:3,自引:0,他引:3  
This paper studies the problem of finite-time stabilization for nonlinear systems. We prove that global finite-time stabilizability of uncertain nonlinear systems that are dominated by a lower-triangular system can be achieved by Hölder continuous state feedback. The proof is based on the finite-time Lyapunov stability theorem and the nonsmooth feedback design method developed recently for the control of inherently nonlinear systems that cannot be dealt with by any smooth feedback. A recursive design algorithm is developed for the construction of a Hölder continuous, global finite-time stabilizer as well as a C1 positive definite and proper Lyapunov function that guarantees finite-time stability.  相似文献   

4.
The problem of global stabilization for a class of switched nonlinear feedforward systems under arbitrary switchings is investigated in this paper. Based on the integrator forwarding technique and the common Lyapunov function method, we design bounded state feedback controllers of individual subsystems to guarantee asymptotic stability of the closed-loop system. A common coordinate transformation of all subsystems is exploited to avoid individual coordinate transformations for subsystems that are required when applying the forwarding recursive design scheme. An example is provided to demonstrate the effectiveness of the proposed design method.  相似文献   

5.
In this note, we solve the global adaptive stabilization problem for a class of feedforward nonlinear systems which possesses a much more general feedforward structure than those feedforward nonlinear systems which can be globally adaptively stabilized previously. The design of our adaptive stabilizer takes a two-step procedure: we first design a stabilizer containing a certain tuning parameter and then design a switching logic to tune it online in a switching manner. Global stability results of the closed-loop system have been proved, and a simulation example is given.  相似文献   

6.
一类多输入级联非线性切换系统的全局镇定   总被引:2,自引:1,他引:1  
研究一类带有部分线性系统的多输入级联非线性切换系统的全局镇定问题. 首先, 给出保证线性部分有一致规范型的充分条件. 其次, 利用一致规范型及其零动态的共同二次Lyapunov函数设计状态反馈使得线性部分在任意切换律下镇定. 最后, 通过构造共同Lyapunov函数能实现闭环系统在任意切换律下的全局渐近稳定性.  相似文献   

7.
This paper investigates the global output-feedback stabilization for a class of uncertain time-varying nonlinear systems. The remarkable structure of the systems is the presence of uncertain control coefficients and unmeasured states dependent growth whose rate is inherently time-varying and of unknown polynomial-of-output, and consequently the systems have heavy nonlinearities, serious uncertainties/unknowns and serious time-variations. This forces us to explore a time-varying plus adaptive methodology to realize the task of output-feedback stabilization, rather than a purely adaptive one. Detailedly, based on a time-varying observer and transformation, an output-feedback controller is designed by skillfully combining adaptive technique, time-varying technique and well-known backstepping method. It is shown that, with the appropriate choice of the design parameters/functions, all the signals of the closed-loop system are bounded, and furthermore, the original system states globally converge to zero. It is worth mentioning that, the heavy nonlinearities are compensated by an updating law, while the serious unknowns and time-variations are compensated by a time-varying function. The designed controller is still valid when the system has an additive input disturbance which, essentially different from those studied previously, may not be periodic or bounded by any known constant.  相似文献   

8.
In this paper, the problem of output-feedback stabilization is investigated for the first time for a class of stochastic nonlinear systems whose zero dynamics may be unstable. Under the assumption that the inverse dynamics of the system is stochastic input-to-state stabilizable, a stabilizing output-feedback controller is constructively designed by the integrator backstepping method together with a new reduced-order observer design and the technique of changing supply functions. It is shown that, under small-gain type conditions for small signals, the resulting closed-loop system is globally asymptotically stable in probability. The obtained results extend the existing methodology from deterministic systems to stochastic systems. An example is given to demonstrate the main features and effectiveness of the proposed output-feedback control scheme.  相似文献   

9.
This work extends the existing output feedback stabilization schemes for the systems in a "perturbed chain-of-integrator" form. In particular, we further relax the triangular-type conditions imposed on the perturbed terms and analyze the robust property of the linear output feedback control law using the newly proposed condition.  相似文献   

10.
对一类不确定非线性系统提出了一种连续的全局鲁棒有限时间控制律.首先,针对标称系统设计出了一种状态反馈控制律,应用Lyapunov直接稳定性理论和Lasalle不变性原理证明了闭环标称系统的全局渐近稳定性,同时具有负的齐次度;其次,引入辅助变量和采用有限时间收敛的二阶滑模Super—twisting算法,设计出了对不确定性和干扰进行抑制的补偿控制项,并根据有限时间Lyapunov函数给出了补偿控制项参数的取值范围;最后,综合得到一种连续的使实际闭环系统有限时间收敛到平衡点的鲁棒镇定控制律.仿真结果表明了所提控制律的有效性.  相似文献   

11.
This paper addresses the problem of global finite-time stabilization for a class of uncertain switched nonlinear systems via output feedback under arbitrary switchings. Based on the adding a power integrator approach, we design a homogeneous observer and controller for the nominal switched system without the perturbing nonlinearities. Then, a scaling gain is introduced into the proposed output feedback stabilizer to implement global finite-time stability of the closed-loop system. In addition, the proposed approach can be also extended to a class of switched nonlinear systems with upper-triangular growth condition. Two examples are given to illustrate the effectiveness of the proposed method.  相似文献   

12.
In this paper stabilization of nonlinear systems with quadratic multi-input is considered. With the help of control Lyapunov function (CLF), a constructive parameterization of controls that globally asymptotically stabilize the system is proposed. Two different cases are considered. Firstly, under certain regularity assumptions, the feasible control set is parameterized, and continuous feedback stabilizing controls are designed. Then for the general case, piecewise continuous stabilizing controls are proposed. The design procedure can also be used to verify whether a candidate CLF is indeed a CLF. Several illustrative examples are presented as well.  相似文献   

13.
We present sufficient conditions for the global stabilizability of two cascade connected nonlinear systems. These are based on general results concerning global asymptotic stability of triangular systems which are proved in the last section. For polynomial systems, in particular, the stabilizing feedback is given explicitly.  相似文献   

14.
This note studies the problem of global finite-time stabilization by dynamic output feedback for a class of continuous but nonsmooth nonlinear systems. By extending the adding-a-power-integrator technique and a special continuous observer design, a dynamic output feedback controller is explicitly constructed to render the systems globally finite-time stable. The novelty of the note is the development of a recursive design procedure, which takes full advantage of the continuous structure of the systems in constructing the state feedback stabilizer and the continuous observer with rigorously selected gains.  相似文献   

15.
This paper deals with global stabilization and disturbance suppression of a class of nonlinear systems using output feedback. The disturbances generated from a unknown linear exosystem are completely compensated. The order of the exosystem is assumed known and the eigenvalues are distinct. No other assumptions are needed in the control design. This means that the proposed control design is able to completely compensate the disturbances without knowing their amplitudes, frequencies and phases, as long as the number of different frequency components in the disturbances is known. A new formulation of state estimation is introduced to ensure the global stabilization and complete disturbance suppression. Adaptive control technique is used to design an adaptive internal model based on a recently introduced formulation of unknown exosystems and the parameters in the adaptive internal model converge to the actual values, from which the unknown disturbance frequencies can be calculated. In the proposed control design, a number of control coefficients are made adaptive so that the result is global with respect to unknown frequencies in the disturbances.  相似文献   

16.
This paper deals with stabilization of a class of delay discrete-time nonlinear systems through state and output feedback. We provide an explicit bounded state feedback law as an extension of the Jurdjevic-Quinn method, from nonlinear theory, to this class of systems. Next, we present a useful and systematic approach to design an observer for the same class of systems. Then, we show how the global stabilization problem via dynamic output feedback can be solved by using the two previous results. Finally, numerical examples are given to illustrate the effectiveness of the proposed design method.  相似文献   

17.
A global nonsmooth stabilization scheme is presented for a class of nonlinear cascaded systems with uncontrollable linearization. A stepwise constructive control methodology is proposed for the driving subsystem by using the adding a power integrator technique. Under suitable conditions and based on homogeneous properties, it is proved that the stabilization of the driving subsystem implies the stabilization of the overall cascaded system. Due to the versatility of the adding a power integrator technique and homogeneous properties, the proposed controller not only can be used to stabilize the cascaded system asymptotically, but also is able to lead to an interesting result of finite-time stabilization under appropriate conditions.  相似文献   

18.
This paper considers the problem of the global finite-time stabilization for the high-order nonlinear systems with unknown control directions. Due to the uncertainty of control directions, the paper analyzes all possible conditions of the directions. The Lyapunov-based logic switching rule ensures that we can find the correct control directions. The adaptive switching controller with a switching parameter which is to be tuned online guarantees that the derivative of Lyapunov function is less than a negative definite function and the closed-loop system is globally finite-time stable. The effectiveness of the proposed method is illustrated by an example.  相似文献   

19.
In this paper the problem of robust control of a class of nonlinear systems with internal and input channel uncertainties is addressed. The proposed control algorithm reflects the two-level structure of the plant and guarantees the system uniform asymptotic stability with respect to an arbitrary neighbourhood of the nominal system stability point.  相似文献   

20.
In this paper, we aim at addressing the problem of global output feedback stabilization for a class of uncertain nonlinear systems with quantized input and output. The nonlinear functions of the system are assumed to satisfy high‐order growth condition on the unmeasurable states. Based on the homogeneous domination approach and sector bound approach, a homogeneous quantized controller computed from quantized output is constructed, and a guideline is derived to select the parameters of the quantizers. Further, it is proved that, with the proposed scheme, the closed‐loop system is globally asymptotically stable. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号