首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用紧凑满液型蒸发换热器,利用水平传热管叉排管束狭窄空间内早期沸腾强化换热机理将中小热负 荷条件下的自然对流换热转化为旺盛核沸腾换热,换热性能大大优于传统的降膜式蒸发换热器。对水平传热管 管束在受限空间内沸腾强化换热进行实验研究,确认了紧凑满液式水平管蒸发换热器具有良好的换热性能,传 热管在管束中的位置对换热特性已经没有明显影响,随着压力增加,受限空间内沸腾强化换热强化效果显著增 加。  相似文献   

2.
Critical heat flux (CHF) in subcooled flow boiling under axially nonuniform heating conditions was experimentally investigated using a tube heated with a dc power source. The thickness of the tube wall in the axial direction was varied to attain axially nonuniform heating. The different thicknesses, therefore, separated the tube into regions of high heat flux and regions of low heat flux. The lengths of these regions of the tube were also varied to study the effect on the CHF. The objective of this system is to initiate boiling in the high-heat-flux region, thus increasing heat transfer, and to interrupt the bubble boundary layer in the low-heat-flux region. Because it is the initiation of boiling that increases heat transfer, the performance of such a system is linked to its effectiveness in repeatedly interrupting and re-establishing the bubble boundary layer. Our experiments, involving tubes that had sections of different thicknesses and different lengths, showed that when the heat flux in the low-heat-flux region was below the net vapor generation (NVG) heat flux, this system enhanced the CHF, but not when it was above the NVG. Also, for relatively short low-heat-flux regions, the CHF was not enhanced, presumably because there was insufficient time to interrupt the bubble boundary layer. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(2): 169–178, 1998  相似文献   

3.
This paper deals with heat transfer and critical heat flux (CHF) in subcooled flow boiling offering a fundamental study aimed at high heat flux cooling. Experiments with water at 0.12 MPa were conducted in a mass velocity range from 500 kg/m2s to 15,000 kg/m2s (velocity from 0.5 m/s to 15 m/s) and subcooling from 20 K to 60 K. A sheet of stainless steel (80 mm in heated length, 10 mm wide, and 0.2 mm thick) was mounted flush with a sidewall of a vertical rectangular channel (cross-section 20 mm by 30 mm) and heated directly using direct current. It was found that mass velocity and subcooling strongly affect CHF and heat transfer in non-boiling convection and partial nucleate boiling regimes. These two parameters have no appreciable influence in the fully developed nucleate boiling regime. In the parameter range used, CHF reached 15 MW/m2. Boiling bubble behavior just prior to reaching CHF was found to vary depending on mass velocity and subcooling. 1998 Scripta Technica, Heat Trans Jpn Res, 27(5): 376–389, 1998  相似文献   

4.
To investigate the size effect on the characteristics of boiling heat transfer, boiling behavior of FC-72 in heated vertical miniature circular tubes immersed in a liquid pool was experimentally studied. Two AISI 304 stainless steel tubes with inner diameters of 1.10 mm and 1.55 mm correspondingly, were heated by swirled Ni-Cr wire heaters and sealed in Lucite blocks by silicon adhesive. Both the top and the bottom ends of the circular test sections were open to the liquid pool. The boiling curves and heat transfer coefficients were obtained experimentally. The boiling behaviors at the outlets of the miniature tubes were also visualized with a digital video camera. Experimental results show that the tube geometry has a significant effect on the boiling characteristics. Vapor blocking at the outlet of the smaller circular tube with a diameter of 1.10 mm caused severe boiling hysteresis phenomena. The CHF decreased with reducing in tube size.  相似文献   

5.
This paper is the second portion of a two-part study concerning the flow boiling of liquid nitrogen in the micro-tubes with the diameters of 0.531, 0.834, 1.042 and 1.931 mm. The contents include the heat transfer characteristics and critical heat flux (CHF). The local wall temperatures are measured, from which the local heat transfer coefficients are determined. The influences of heat flux, mass flux, pressure and tube diameter on the flow boiling heat transfer coefficients are investigated systematically. Two regions with different heat transfer mechanism can be classified: the nucleate boiling dominated region for low mass quality and the convection evaporation dominated region for high mass quality. For none of the existed correlations can predict the experimental data, a new correlation expressed by Co, Bo, We, Kp and X is proposed. The new correlation yields good fitting for 455 experimental data of 0.531, 0.834 and 1.042 mm micro-tubes with a mean absolute error (MAE) of 13.7%. For 1.931 mm tube, the flow boiling heat transfer characteristics are similar to those of macro-channels, and the heat transfer coefficient can be estimated by Chen correlation. Critical heat flux (CHF) is also measured for the four tubes. Both the CHF and the critical mass quality (CMQ) are higher than those for conventional channels. According to the relationship that CMQ decreases with the mass flux, the mechanism of CHF in micro-tubes is postulated to be the dryout or tear of the thin liquid film near the inner wall. It is found that CHF increases gradually with the decrease of tube diameter.  相似文献   

6.
Experimental studies were made on heat transfer on a horizontal platinum wire during nucleate pool boiling in nonazeotropic refrigerant binary mixtures at pressures of 0.25 to 0.7 MPa and at heat fluxes up to CHF. The boiling features of the mixtures and the single-component substances were observed by photography. The relationship between the boiling behavior and the reduction of heat transfer coefficients in binary mixtures is discussed in order to propose a correlation useful for predicting the present experimental data over a wide range of low to high heat fluxes. It is shown that the correlation is applicable to alcoholic mixtures. The physical meaning of k, which was introduced to evaluate the effect of heat flux on the reduction of a heat transfer coefficient, is clarified based on measured nucleate pool boiling heat transfer data and visual observations of the boiling features. © 1998 Scripta Technica, Heat Trans Jpn Res, 27(7): 535–549, 1998  相似文献   

7.
In this study, pool boiling test results are provided for the structured enhanced tubes having pores with connecting gaps. The surface geometry of the present tube is similar to that of Turbo-B. Three tubes with different pore size (0.20 mm, 0.23 mm and 0.27 mm) were manufactured and tested using R-11, R-123 and R-134a. The pore size which yields the maximum heat transfer coefficient varied depending on the refrigerant. For R-134a, the maximum heat transfer coefficient was obtained for the tube having 0.27 mm pore size. For R-11 and R-123, the optimum pore size was 0.23 mm. One novel feature of the present tubes is that their boiling curves do not show a ‘cross-over’ characteristic, which existing pored tubes do. The connecting gaps of the present tube are believed to serve an additional route for the liquid supply and delay the dry-out of the tunnel. The present tubes yield the heat transfer coefficients approximately equal to those of the existing pored enhanced tubes. At the heat flux 40 kW/m2 and saturation temperature 4.4° C, the heat transfer coefficients of the present tubes are 6.5 times larger for R-11, 6.0 times larger for R-123 and 5.0 times larger for R-134a than that of the smooth tube  相似文献   

8.
Most investigations on forced convective boiling have been conducted by using uniformly heated round tubes under a vertical upward flow condition, although the actual system has a non‐uniformly heated condition with several tube orientations. The non‐uniformity of the heat flux and tube inclination causes the liquid film distribution, which in turn affects the critical heat flux. In this investigation, the flow and heat‐transfer characteristics were experimentally investigated under non‐uniformly heated conditions along the circumferential direction with a 45° tube inclination. In the experiment, CHF was measured by using two different heated lengths, i.e., 900 and 1800 mm. The experimental results showed a unique tendency of CHF caused by the interrelationship of the non‐uniform heat flux distribution, the tube inclination, and liquid film redistribution. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20333  相似文献   

9.
ln desalinization devices and some heat exchangers making use of low‐quality heat energy, both wall temperatures and heat fluxes of heated tubes are quite low and generally cannot cause boiling in flooded‐type tube bundle evaporators with a large tube spacing. But when the tube spacing is very small, boiling in restricted spaces can occur and induce a higher heat transfer than that of a falling film or pool boiling at the same heat flux. This study investigated experimentally the effects of tube spacing, positions of tubes, and heating status of tubes as well as surface status (smooth and roll‐worked) on boiling in restricted spaces in compact horizontal tube bundle evaporators under atmospheric pressure. The experimental results provide a restricted space boiling database for water in smooth and enhanced surface tube bundles. Of particular importance is information concerning the influence of tube spacing of flooded‐type tube bundle evaporators, especially for the case of zero pitch, when the neighboring tubes are contacting each other. © 2001 Scripta Technica, Heat Trans Asian Res, 30(5): 394–401, 2001  相似文献   

10.
An experimental investigation has been carried out to determine the heat transfer coefficient during pool boiling of water over a bundle of vertical stainless steel heated tubes of 19.0 mm diameter and 850 mm height. The p/D of bundle was 1.66 and was placed inside a glass tube of 100 mm diameter and 900 mm length. The data were acquired for the heat flux range of 2–32 kWm− 2.  相似文献   

11.
CO2在微细通道内流动沸腾换热过程所具有的临界热流密度(CHF)对于其换热系数有着重要影响。根据国内外现有发表的公开文献的实验数据分析了质量流量、饱和温度、管径等对临界热流密度的影响,并对理论模型与试验数据进行误差分析。发现Bowring预测关联式对小于3 mm管径内临界热流密度预测精度较高,在30%误差范围内可以达到70%预测精度,Wojtan预测关联式具有较小的平均绝对误差。提出了今后CO2在微细通道内沸腾换热CHF的研究方向。  相似文献   

12.
为实现节能降耗,开发了多种强化沸腾传热的高效换热管。以水为工质,在0.1MPa下对垂直光管、烧结多孔管和T槽管进行了池沸腾传热实验研究,并分析了沿管子轴向的温度分布。实验结果表明,烧结多孔管与T槽管能显著降低起始沸腾过热度、强化沸腾传热:烧结多孔管和T槽管的起始沸腾过热度比光管的低1.5K左右;烧结多孔管和T槽管的核态沸腾传热系数分别为光管的2.4~3.2倍和1.6~2.0倍。此外,烧结多孔管和T槽管能降低相同热流密度下的壁面温度,且有利于降低管子轴向的温差。  相似文献   

13.
An experimental and semitheoretical study was carried out for the critical heat flux (CHF) on natural convective boiling in uniformly heated vertical short‐thick tubes and vertical short‐thick annular tubes submerged in saturated liquids. By adapting a mathematical dealing method based on the theoretical formulas of CHF of both the natural convective boiling in vertical narrow‐long tubes and the pool boiling, a simple semitheoretical formula was derived. The new formula expands the prediction range of CHF from pool boiling of vertical plates to very long vertical tubes and agrees well with the data of the tubes, annular tubes submerged in water or other liquids under various pressure conditions. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(5): 402–410, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10103  相似文献   

14.
In an actual boiling channel, e.g., a boiler water‐tube, the circumferential heat flux is not uniform. Thus, the critical heat flux (CHF) of a non‐uniformly heated tube becomes an important design factor for conventional boilers, especially for a compact water‐tube boiler with a tube‐nested combustor. A small compact boiler is operated under low‐pressure and low‐mass‐flux conditions compared with a large‐scale boiler, thus the redistribution of liquid film strongly affects the characteristics of CHF. In this investigation, non‐uniform heat flux distribution along the circumferential direction was generated by using the Joule heating of SUS304 tubes with the wall thickness distribution. The heated length of test‐section was 900 mm with an inner diameter of 20 mm and an outer diameter of 24 mm. The center of the inner tube surface was shifted by ε=0, 0.5, 1.0, 1.5 mm from the center of the outer tube surface. The heat flux ratio between maximum and minimum heat flux of these tubes corresponded to 1.0, 1.7, 3.0, and 7.0, respectively. The experimental conditions were as follows: system pressure at 0.3 and 0.4 MPa, mass flux of 10–100kg/(m2s), inlet temperatures at 30° and 80°. The experimental results showed an increase in the critical heat flux substantiated by the existence of the redistribution of the flow. These characteristics are explained by using a concept similar to that of Butterworth's spreading model. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(1): 47–60, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20095  相似文献   

15.
The boiling heat transfer of refrigerant R-134a flow in horizontal small-diameter tubes with inner diameter of 0.51, 1.12, and 3.1 mm was experimentally investigated. Local heat transfer coefficient and pressure drop were measured for a heat flux ranging from 5 to 39 kW/m2, mass flux from 150 to 450 kg/m2 s, evaporating temperature from 278.15 to 288.15 K, and inlet vapor quality from 0 to 0.2. Flow patterns were observed by using a high-speed video camera through a sight glass at the entrance of an evaporator. Results showed that with decreasing tube diameter, the local heat transfer coefficient starts decreasing at lower vapor quality. Although the effect of mass flux on the local heat transfer coefficient decreased with decreasing tube diameter, the effect of heat flux was strong in all three tubes. The measured pressure drop for the 3.1-mm-ID tube agreed well with that predicted by the Lockhart–Martinelli correlation, but when the inner tube diameter was 0.51 mm, the measured pressure drop agreed well with that predicted by the homogenous pressure drop model. With decreasing tube diameter, the flow inside a tube approached homogeneous flow. The contribution of forced convective evaporation to the boiling heat transfer decreases with decreasing the inner tube diameter.  相似文献   

16.
Experimental and theoretical studies were carried out on the natural convective boiling heat transfer and critical heat flux (CHF) in uniformly heated vertical annular tubes filled with a porous medium and submerged in saturated water and R11 liquid. The heat transfer experimental results were compared with the case without a porous medium. It was shown that heat transfer is greatly enhanced by the porous medium in the region of low heat flux. By adopting a simple mixing flow model, a generalized approximate relationship was derived for predicting the CHF. The prediction agrees relatively well with the CHF experimental data. © 2000 Scripta Technica, Heat Trans Asian Res, 29(6): 447–458, 2000  相似文献   

17.
Experiments on pool boiling heat transfer from a circumference-interrupted T-finned (CIT) tube and a Thermoexcel-E tube are conducted at system pressures ranging from 1 to 6 bars, with ethyl alcohol and R-113 as the working media. The strong effects of system pressure on the excellent boiling heat transfer performance of the two enhanced boiling tubes are presented. Based on the analyses of boiling vapor-liquid two-phase flow and heat transfer within the microchannels of the two mechanically fabricated porous layers, and by synthesizing experimental data, semiempirical correlations are established for predicting the boiling heat transfer performance of CIT and Thermoexcel-E tubes separately at atmospheric and superatmospheric pressures.© 1999 Scripta Technica, Heat Trans Asian Res, 28(8): 640-648, 1999  相似文献   

18.
This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of ¼, ½, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 °C. For mass velocities higher than 200 kg/m2s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m2s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%.  相似文献   

19.
The study was focused on the effect of the inclination angle on the critical heat flux of countercurrent boiling in an inclined uniformly heated tube with open top and closed bottom ends at zero inlet flow. The experimental results show that the CHF data of the small vertical tubes agree reasonably well with the predicting correlation proposed by Tien. The CHF data of the small inclined tubes decrease with reducing the inclination angle. The experimental data of the inclined tubes agrees reasonably well with the modified correlation, which is resulted from the conventional correlation for vertical tubes.  相似文献   

20.
Pool boiling heat transfer experiments were carried out on a conventional smooth tube and four enhanced tubes with reentrant surfaces using propane, isobutane and their mixtures as working fluids for six saturation temperatures. The heat transfer performance is very different for different surface-fluid combinations. Compared to the smooth tube, the mixture boiling heat transfer degradation is more significant for the enhanced tubes. The current data are compared with available literature data for the same fluids and also with data for R12 and R134a. Experimental results of boiling hysteresis and for twin-tube bundles are also provided. Further explanations for the different heat transfer performances is provided by means of visualization in an accompanying paper [Y. Chen, M. Groll, R. Mertz, R. Kulenovic, Visualization and mechanisms of pool boiling of propane, isobutane and their mixtures on enhanced tubes with reentrant channels, submitted to Int. J. Heat Mass Transfer (H/S 04016)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号