首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The space charge in full size 250 kV HVDC power cables was measured using the pulse-electroacoustic method. Measurements of two types of newly developed DC XLPE cables with 20 mm insulation were taken under a DC voltage of 500 kV with the conductor temperature at room temperature and at 85°C. A qualitative analysis of the space-charge distribution and a quantitative analysis of the electric fields in the vicinity of semicon interfaces were conducted. It was shown that the field in the vicinity of the inner semicon tends to increase by 10-40% when the polarity of the applied voltage was reversed, in the case when the conductor was kept at 85°C. However, the distortion of the electric field was significantly less than that expected in conventional XLPE cables. As the result, the subjected DC cables are considered to have stable DC characteristics from the viewpoint of space charge-behavior  相似文献   

2.
The long‐term dc properties of DC‐XLPE insulation materials, which have been developed for dc use, were investigated. It was found that the lifetime of DC‐XLPE under dc voltage application is extended by the addition of nano‐sized filler. The time dependence of the space charge distribution at 50 kV/mm was observed for 7 days. Almost no accumulation of space charge in DC‐XLPE was found. The 250‐kV DC‐XLPE cables and accessories were manufactured and subjected to a type test and PQ test for use in the Hokkaido–Honshu dc link facility owned by the Electric Power Development Co., Ltd. These tests were performed under conditions that included a polarity reversal test for line commutated converter (LCC) systems as recommended in CIGRE TB 219. The test temperature was 90 °C. The type test and PQ test were successfully completed. The DC‐XLPE cable and accessories were installed in summer 2012 for the Hokkaido–Honshu dc link. After the installation of the dc extruded cable system, a dc high‐voltage test at 362.5 kV (=1.45 PU) for 15 min was successfully completed in accordance with CIGRE TB 219. This dc extruded cable system was put into operation in December 2012 as the world's highest‐voltage extruded dc cable in service and the world's first dc extruded cable for a LCC system including polarity reversal operation.  相似文献   

3.
高压直流电缆接头与终端为电缆系统故障的多发点,其击穿强度为直流输电系统安全稳定运行的重要基础。文中以±320 kV高压直流海底电缆中交联聚乙烯(cross linked polyethylene,XLPE)/三元乙丙橡胶(ethylene propylene diene monomer,EPDM)附件为研究对象。首先,研究电缆及附件负荷循环耐压试验,发现附件界面为击穿薄弱环节;其次,研究绝缘材料电导率随温度变化特性对电场分布的影响规律,通过有限元仿真模拟电缆空载和满载运行时附件的温度分布与电场分布,发现最大电场出现在电缆绝缘靠近附件应力锥一侧,为29.5 kV/mm,低于附件材料的击穿场强;最后,研究界面在直流电场下空间电荷特性对电场分布规律的影响,通过电声脉冲法测试复合叠层片状样品介质界面的空间电荷及其电场分布,发现场强畸变率约为100%~200%。同材料本征绝缘匹配相比,界面空间电荷积聚对附件内部电场造成的畸变程度更严重,在后续附件提升中应更注重开发抑制空间电荷的绝缘材料。  相似文献   

4.
This report deals with the mechanism of space charge accumulation in cross‐linked polyethylene (XLPE) under dc electric field. Space charge was measured by the pulsed‐electroacoustic method with applying dc stress of 20 kV/mm. A large amount of hetero space charge accumulated in fresh XLPE samples. Factors influencing the space charge accumulation were analyzed in regard to cross‐linking by‐products and antioxidant. No space charge was seen when the fresh sample was degassed to remove cross‐linking by‐products. Introducing acetophenone, one of the cross‐linking by‐products, in a degassed sample produces no space charge, suggesting that acetophenone itself could not be the direct factor of space charge formation. However, heating this sample up to 150 °C results in formation of hetero space charges as in virgin samples. Hence, it is concluded that hetero space charges may be formed when impurities, such as an antioxidant, dissociate thermally with the help of acetophenone and that the dissociated products are attracted toward both electrodes under a dc field to form the hetero space charges. © 1999 Scripta Technica, Electr Eng Jpn, 129(2): 13–21, 1999  相似文献   

5.
Information on space-charge behavior in thick insulated samples aids in understanding the dc characteristics of polymer-insulated dc cables. The pulsed electroacoustic method is used to investigate several space charge formation factors in 2 mm-thick polyethylene (PE). The following results were obtained. For measurement factors: (1) A polymeric semiconducting electrode provides a more accurate measurement than does a metal electrode as a result of better matching of acoustic impedance with PE. (2) Within a dc electrical stress range of several tens kV/mm, the space charge distributions under and after dc voltage application are almost the same; this is due to a comparatively long time of space-charge decay. (3) The space-charge distribution of a plate sample agrees with that of a cable sample having the same insulation thickness. For insulating material factors: (1) The amount of space charge in crosslinked polyethylene (XLPE) is much larger than that in low-density PE (base of XLPE). The space charge of XLPE continues to increase even after dc voltage application (24 h); that of LDPE reaches equilibrium with a few hours. (2) The aforementioned space charge difference between XLPE and LDPE is assumed to be caused by ionic impurities in XLPE, not by the additives themselves (acetophenon and cumylalcohol as byproducts of cross linking and antioxidant).  相似文献   

6.
This paper provides data on four commercial tree retardant crosslinked polyethylene (TR-XLPE) and one cross-linked polyethylene (XLPE) insulated 15 kV cables supplied by three manufacturers. The cables have "super-smooth" conductor shields and "extra-clean" insulation and insulation shields. AC and impulse voltage breakdown and selected other characterization data are presented for cables that were aged immersed in room temperature water (15-30/spl deg/C) up to 24 months of a planned 48 months aging program. The five cables have high ac voltage breakdown strength, three of the TR-XLPE cables, actually increased in breakdown strength during aging. The one TR-XLPE cable that had the lowest ac voltage breakdown had vented trees at the insulation shield and high dissipation factor, which the other cables did not have. The impulse voltage breakdown strength of all cables decreased during aging; the cable with the lowest ac voltage breakdown also has the lowest impulse voltage breakdown. The dissimilar performance of the TR-XLPE cables and the excellent performance of the XLPE cable indicates evaluations at longer times are required to differentiate between modern TR-XLPE and XLPE insulated cables.  相似文献   

7.
We measured the basic electrical insulation characteristic of biodegradable polylactic acid (PLA), and the following results were obtained. The volume resistivity, dielectric constant, and dielectric loss tangent measured at room temperature were almost the same as those of crosslinked polyethylene (XLPE) currently used as insulating material for cables and electric wires. The mean impulse breakdown strength of PLA was about 1.3 times that of XLPE. Also, space charge accumulation in PLA and XLPE was measured. The amount of space charge accumulation in PLA was one-half that in XLPE when a DC voltage was applied for a short time.  相似文献   

8.
Internal space charge behavior of insulating materials has recently attracted attention of many researchers, and a large number of experimental studies were carried out by using the materials for dc cables, such as XLPE, LDPE, and HDPE. Epoxy resins are used for insulation under strong electric fields in power apparatus and in electronic devices, and we investigated the behavior of internal space charge using the pulsed electroacoustic method. Two types of epoxy resins were studied: insulation-grade and craft-grade. When dc electric fields were applied to the craft resins treated by immersing them into room-temperature water for 8 and 24 h, positive and negative charges accumulated near the anode and the cathode, respectively, and the charge distribution changed with the immersion time. On the other hand, no charge was observed in the insulation-grade epoxy resin. Next, we treated the samples by immersing them into 100 °C water for 8 h. When the sample was treated for 8 h, hetero charge distribution, which means positive charges near the cathode and negative charges near the anode, was observed. This result is consistent with a previous paper reporting that by chemical analysis, secondary decomposition had occurred. These results show that water and temperature influence the internal space charge behavior of epoxy resins. © 1999 Scripta Technica, Electr Eng Jpn, 129(3): 9–16, 1999  相似文献   

9.
以实际直流交联聚乙烯(DC XLPE)电缆工程设计示例,表明将柔性直流输电(VSC)系统用DC XLPE电缆的导体的最高运行温度提高到90℃,其技术经济效果显著。按DC XLPE电缆抑制空间电荷要求,阐明DC XLPE电缆绝缘的直流恒定电流电场中空间电荷密度与绝缘温度梯度和XLPE绝缘的体积电阻率的温度系数成正比而与导体最高温度不直接相关。通过合理的DC XLPE电缆工程设计和正确选用DC XLPE电缆,可以在提高DC XLPE电缆传输功率和减小绝缘温差抑制空间电荷方面取得优化结果。320 kV及以下XLPE电缆在导体最高温度90℃下运行,绝缘损耗远低于导体损耗,DC XLPE电缆发生热不稳定的可能性很低。对VSC系统用DC XLPE电缆导体运行温度提高到90℃的可行性表示肯定的意见,对实现目标提出具体的措施建议。  相似文献   

10.
The accumulation of space charge in XLPE (cross-linked polyethylene), cross-linked using DCP (dicumyl peroxide) or a silane-based grafting process, was studied via the LIPP (laser-induced-pressure-pulse) technique. Planar samples 0.5 mm thick were obtained from the XLPE insulation of power distribution cables. DC fields to 10 kV/mm were applied at temperatures in the range 20 to 90°C. Usually the DCP samples developed heterocharge, and the silane samples homocharge. However, the observed space charge densities were not very different. Nearly all of the charge accumulated within 100 μm of each electrode, with very little in the remainder of the volume. Both sample types showed a near-perfect inversion of the equilibrium space charge profiles on reversing the applied voltage polarity. This observation is explained in terms of charge injection at the electrodes, electron transfer between electrode and XLPE in either direction involving the same narrow `window' of combined donor and acceptor states in the insulator, centered on the Fermi level  相似文献   

11.
A new insulation diagnostic method for XLPE cables containing water trees is presented. A dc component in the ac charging current of these cables was found to be a significant sign of the existence of water trees. The dc component has good correlations with such insulation characteristics of aged XLPE cables as ac breakdown voltage and dc leakage current. Criteria for insulation diagnosis of 6.6kV XLPE cables have been established. An automatic insulation diagnostic device has been developed. It is now being applied to hot-line XLPF cables in distribution systems of TEPCO (The Tokyo Electric Power Co., Inc.).  相似文献   

12.
Many processes have been considered over the years to explain the origin of breakdown in cable insulation. Such effects as space charge build-up, tree growth, charge injection, etc. have all been discussed. Various techniques are now available to measure, in a nondestructive way, space charge distributions in insulators. These techniques, for instance the pressure wave propagation (PWP) method, can be used under applied electric stress and thus make it possible to follow the development of space charge in selected regions of the insulators. In this paper we present new evidence linking space charge buildup, tree growth and breakdown in XLPE. We have used the PWP method to monitor the charge distribution as a function of time under dc stress in high insulating thickness cable. We show that for certain insulation systems the space charge buildup can increases the local field to a value which is more than 8× the applied electric field, leading to breakdown. Post-mortem analysis followed by optical microscopy shows the presence of electrical trees, the breakdown channel being centered on one of them. The study of space charge evolution in practical insulations permits an understanding of the role of space charge in dc breakdowns. This understanding enables the development of technologies to suppress this effect and hence realize practical dc XLPE transmission cables  相似文献   

13.
VLF (Very Low Frequency) high voltage with frequency of 0.1 Hz will be utilized for an on‐site test of XLPE underground cables, instead of conventional dc high voltage test. Since XLPE cables are connected to GIS (Gas Insulated Switchgears) in substations, the influence of VLF voltage application to GIS insulation should be investigated. One of the most important characteristics for GIS insulation lies in the metallic particle contamination and its behavior, which may induce breakdown in GIS. From the above viewpoint, this paper discusses the metallic particle behavior and breakdown characteristics under VLF voltage application in GIS. Experimental results revealed that (1) Particle motion under VLF condition was similar to that under dc condition, while specific in the transient behavior at the polarity reversal. (2) Breakdown was induced by particles located in the vicinity of high voltage conductor at the instance of crossing the gap or in the firefly conditions. (3) Breakdown voltage in positive half cycle was higher than that in negative half cycle at the lower gas pressure, while lower at the higher gas pressure, which was attributed to the particle behavior and the breakdown mechanism of SF6 gas. Consequently, metallic particles in GIS under VLF voltage application exhibited the specific behavior associated with the slow change of instantaneous voltage and polarity, and resulted in the complex pressure dependence of breakdown characteristics. © 2002 Wiley Periodicals, Inc. Electr Eng Jpn, 139(4): 33–40, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.1166  相似文献   

14.
For pt.I see ibid., vol.7, no.2, p.596-602 (1992). Preliminary results are described in which 15 kV XLPE cables were subjected to accelerated aging tests under a variety of controlled voltage stress and thermal load cycle conditions, with loss of life being calculated for each set of conditions in terms of the geometric mean time to failure (GMTF). The relative influence of voltage stress and load cycle temperature are discussed. Accelerated aging results show a reduction in GMTF for 15 kV XLPE-insulated cables as the voltage stress or conductor load cycle temperature is increased in a controlled manner. The relative influence of voltage stress versus load cycle temperature can be compared. The GMTF increases more in going from 90°C to 60°C at constant applied voltage stress than in going from 4X to 2X rated voltage at constant load cycle temperature conditions  相似文献   

15.
自2012年起,先后有±160 kV、±200 kV及 ±320 kV 交联聚乙烯(XLPE)绝缘的高压直流电缆投入了柔性直流输电工程应用或进入现场敷设。它们分别是:2013年12月投入运行的南澳三端柔性直流输电工程,采用37 km的±160 kV直流海底和直流陆地电缆,用于连接南澳岛大型风场与陆地电网;2014年6月投入运行的舟山±200 kV多端柔性直流输电工程,海底电缆总长度达到294 km;正在建设的厦门±320 kV柔性直流输电工程,电缆总长度21 km,计划于2015年12月投入运行。以上三项柔性直流输电工程的成功建设与运行,也使中国的挤出绝缘高压直流电缆在电压等级上实现了三级跳式的跨越。本文介绍了XLPE绝缘高压直流电缆研发过程中针对材料特性、空间电荷分布、脱气及测试方法等方面的研究成果。并简要介绍了三个电压等级电缆现有柔性直流工程中的应用情况。  相似文献   

16.
This paper describes the development of ±250 kV DC XLPE cables. Through a series of material investigations and the evaluation of model cables using two kinds of XLPE compound containing inorganic filler to suppress the accumulation of space charge within XLPE insulation, ±250 kV DC XLPE cables and factory joints were designed and manufactured. To check the DC electrical performance and reliability of ±250 kV DC submarine cable, electrical tests, mechanical test and long-term aging tests were performed. The test results showed that they had sufficient properties and reliability for practical use  相似文献   

17.
Space charge distribution was measured, applying an electric field of >1 MV/cm to 3 mm thick XLPE cable insulation. Improving the conventional pulse electro-acoustic method, a new method was developed to measure space charge when applying HV to cables. Under high field, hetero charges were formed soon after voltage application, followed by an injection from the cathode. Then intermittent injections of charge packets from the anode took place. The space charge distribution kept changing without becoming stabilized. A simulation was done assuming hysteresis of the injection characteristics. The observed intermittent injection near the anode was qualitatively reproduced using computer simulation  相似文献   

18.
By utilizing the laser induced pressure-pulse (LIPP) technique, the behavior of space charge in low-density polyethylene (LDPE) and crosslinked polyethylene (XLPE) films in contact with metal or carbon-loaded semiconducting layers was studied quantitatively to clarify the space-charge characteristics in power cables. Negative heterospace charge near the anode and positive space charge in the bulk were observed in unoxidized LDPE under the fields above 120 kV/mm. The amount of negative space charge increased with applied field, while positive space charge in the bulk disappeared with increasing applied field. This indicates that electron injection and ionization are enhanced by applied field. Prominent negative homospace charge was formed near the cathode in oxidized LDPE, which indicates that oxidation enhanced electron injection. The depth of charge centroid from the cathode became larger with increasing temperature. This indicates that the effective electron mobility increases with temperature. Negative space charge also was formed in the bulk in XLPE films with metal electrodes, which indicates that crosslinking enhanced electron injection. XLPE films with a carbon-loaded semiconducting layer showed both negative and positive homospace charges near the semiconducting layers, which indicates that both electrons and holes were injected from the semiconducting layer.  相似文献   

19.
A conductor temperature monitoring system using the current method was developed to estimate conductor temperatures at joints of extra-high-voltage (EHV) underground power transmission XLPE cables in real time. The validity of the software and hardware was confirmed by measurements on an extrusion molded joint (EMJ) of a 275 kV 1×2500 mm2 aluminum-sheathed XLPE cable. The mean circumferential jacket surface temperature over the EMJ, where the cross section was larger than that at the cable portion, was measured by a line thermosensor using thermocouples or a distributed temperature sensor using an optical fiber. The conductor temperature in the cable joint was estimated by numerically solving simultaneous differential equations with 31 unknowns. A system which allows measurement of the cable conductor current at insulation joints of installed lines was also developed  相似文献   

20.
刘英  赵明伟  陈嘉威 《中国电力》2012,53(9):157-165
由于电缆接头结构复杂并含有多个复合界面,对其进行直流电场分析通常需要借助数值仿真软件、采用电-热耦合方法进行迭代计算,耗时费力。为了满足工程中仅对中低压直流XLPE电缆用中间接头最大场强进行校核的需求,利用传热学与电磁学相关理论,建立接头热场分布的简化分析模型,推导出计算应力锥根部场强的解析式,仅需输入少量必要参数,即可确定接头中的最大场强。通过以10 kV和35 kV XLPE电缆用硅橡胶和乙丙橡胶接头为例,分别在不同直流电压及接头内外温差下进行解析计算,并与相应的有限元仿真结果对比,验证所提方法的计算精度及适用性,为工程人员进行中低压直流预制接头的设计及校核提供强有力工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号