首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study has been conducted to determine the heat transfer characteristics around a circular cylinder attached to the separated flow of air shed from a fence. The fence was located vertically to the flow with a height of H = 40 mm. d/H was constant at 0.638, where d is the cylinder diameter of 25.5 mm. X/H were 0.50 and 0.775 and Y/H ranged from 0.525 to 1.50, where X and Y are, respectively, the distances between the axis of the cylinder and the front face of the fence, and the bottom wall of the test section. The Reynolds number based on the cylinder diameter and the velocity of the undisturbed flow ranged from 1.9 × 104 to 6.0 × 104. It was found that the maximum local Nusselt number changes drastically in the vicinity of Y/H = 1.0–1.11 and that the maximum mean Nusselt number occurs in the neighborhood of Y/H = 1.24–1.43 for X/H = 0.50 and 1.3–1.4 for X/H = 0.775. © 1999 Scripta Technica, Heat Trans Asian Res, 28(3): 211–226, 1999  相似文献   

2.
Enhancement of the heat transfer from a flat surface in a channel flow by attachment of rectangular cross‐sectional blocks has been investigated as a function of Reynolds number (Re), arrangement of the blocks with respect to the main flow direction as well as each other, and the numbers (spacing) of the blocks. The channel had a cross‐sectional area of 80×160 mm2 (i.e. an aspect (width‐to‐height) ratio of 2). Re, based on the hydraulic diameter of the channel (De) and bulk mean velocity (u), changed in the range of 6670–40000. The blocks were positioned both transverse and parallel with respect to the main flow direction. The parallel blocks were arranged in both in‐line and staggered orientation with respect to each other. The effect of the blocks on the flow pressure drop was also measured. The results indicated that the heat transfer could be enhanced or reduced depending on the spacing between the blocks and their positioning and arrangement. For a given pressure drop, the best heat transfer enhancement by the blocks over that from a smooth surface (without blocks) was obtained when the blocks were positioned parallel to the flow and arranged in a staggered manner with respect to each other. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
首次对竖直矩形窄缝内的汽液分相流动区提出一维两相同向分相流动沸腾传热模型 ,并进行了数值计算 ,得到不同质量流速下液膜厚度变化和沸腾传热系数等结果。沸腾传热系数的模型预测值初步与已有实验关联式进行了比较 ,两者基本吻合 ,偏差在± 1 4% ;从而证实了液膜导热是竖直矩形窄缝内汽液分相流动区沸腾传热的主导机理。  相似文献   

4.
Direct numerical simulation was performed for a spatially advancing turbulent flow and heat transfer in a two‐dimensional curved channel, where one wall was heated to a constant temperature and the other wall was cooled to a different constant temperature. In the simulation, fully developed flow and temperature from the straight‐channel driver was passed through the inlet of the curved‐channel domain. The frictional Reynolds number was assigned 150, and the Prandtl number was given 0.71. Since the flow field was examined in the previous paper, the thermal features are mainly targeted in this paper. The turbulent heat flux showed trends consistent with a growing process of large‐scale vortices. In the curved part, the wall‐normal component of the turbulent heat flux was twice as large as the counterpart in the straight part, suggesting active heat transport of large‐scale vortices. In the inner side of the same section, temperature fluctuation was abnormally large compared with the modest fluctuation of the wall‐normal velocity. This was caused by the combined effect of the large‐scale motion of the vortices and the wide variation of the mean temperature; in such a temperature distribution, large‐scale ejection of the hot fluid near the outer wall, which is transported into the near inner‐wall region, should have a large impact on the thermal boundary layer near the inner wall. Wave number decomposition was conducted for various statistics, which showed that the contribution of the large‐scale vortex to the total turbulent heat flux normal to the wall reached roughly 80% inside the channel 135° downstream from the curved‐channel inlet. © 2009 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20275  相似文献   

5.
雷诺数Re=214~10 703时,通过数值模拟方法对布置有冲孔和无孔的两种矩形小翼涡流发生器的矩形通道进行了传热和流阻特性的研究。计算结果表明:在低雷诺数下,冲孔矩形小翼涡流发生器的传热因子j值与无孔矩形小翼涡流发生器相差不大,而在高雷诺数下,冲孔涡流发生器的传热因子j值略低于无孔涡流发生器,大约低1.03%~3.05%。在相同的雷诺数下,无孔矩形小翼涡流发生器的阻力因子f大于冲孔涡流发生器,而且随着雷诺数的增大二者的差距也越来越大。通过对比综合性能指标可知,两种通道的综合性能指标均随着雷诺数的增加而减小,而且冲孔矩形小翼涡流发生器的综合性能要优于无孔矩形小翼涡流发生器。  相似文献   

6.
为了明确竖直矩形窄通道内各阶段流动沸腾的换热特性,优化换热器性能,以去离子水为工质,对尺寸为720 mm×250 mm×3.5 mm的单面电加热竖直矩形窄通道内的流动沸腾换热进行实验研究,分析了质流密度、进口温度、热流密度对流动沸腾局部换热特性的影响。并在已有流动沸腾传热关联式的基础上,对实验数据进行非线性回归分析,得到适用于实验工况下的新流动沸腾传热关联式。结果表明:质流密度增大对流动沸腾段换热特性有强化作用,对核态沸腾段换热特性有削弱作用;热流密度对核态沸腾影响剧烈,但对流动沸腾的影响不明显;入口温度越高,流体会越早进入过冷沸腾阶段,但对局部传热系数的影响不明显;新流动沸腾传热关联式与实验值的平均相对误差为23.87%,其中74.19%的预测值在±25%内,83.87%的预测值在±50%以内,能很好地预测本实验工况下矩形窄通道内流动沸腾的局部传热系数。  相似文献   

7.
Heat transfer in a PEMFC flow channel   总被引:2,自引:0,他引:2  
A numerical method was applied to the heat transfer performance in the flow channel for a proton exchange membrane fuel cell (PEMFC) using the finite element method (FEM). The heat transfer enhancement has been analyzed by transversely installing a baffle plate and a rectangular cylinder to manage flow pattern in the flow channel of the fuel cell. Case studies include baffle plates (gap ratios from 00.05 to 0.2) and the rectangular cylinder (width-to-height ratios from 0.66 to 1.66 with a constant gap ratio of 0.2; various gap ratios from 0.05 to 0.3 with a constant width-to-height ratio 1.0) at constant Reynolds number. The results show that the transverse installation of a baffle plate and a rectangular cylinder in the flow channel can effectively enhance the local heat transfer performance of a PEMFC. The installation of a rectangular cylinder has a better effective heat transfer performance than a baffle plate; the larger the width of the cylinder is the better effective heat transfer performance becomes.  相似文献   

8.
The visualization experiments on HFC R410A condensation in a vertical rectangular channel (14.34mm hydraulic diameter, 160mm length) were investigated. The flow patterns and heat transfer coefficients of condensation in the inlet region were presented in this paper. Better heat transfer performance can be obtained in the inlet region, and flow regime transition in other regions of the channel was also observed. Condensation experiments were carried out at different mass fluxes ( from 1.6 kg/h to 5.2 kg/h) and at saturation temperature 28~ C. It was found that the flow patterns were mainly dominated by gravity at low mass fluxes. The effects of interfacial shear stress on condensate fluctuation are significant for the film condensation at higher mass flux in vertical flow, and con- sequently, the condensation heat transfer coefficient increases with the mass flux in the experimental conditions, The drop formation and growth process of condensation were also observed at considerably low refrigerant vapor flow rate.  相似文献   

9.
垂直矩形窄缝内的过冷流动沸腾换热性能   总被引:1,自引:0,他引:1  
用高速摄像等方法研究了有压模化介质在单一垂直矩形窄缝流道内的气泡形态和传热情况 ,发现窄缝流动沸腾换热强化的原因在于流道尺寸较小 ,气泡的形状发生变化 ,增加了界面体积浓度 ,并强化了对加热面附近的扰动 ,使换热有所强化。通过与实际测量的壁温数据进行比较 ,发现用于计算大流道和池过冷沸腾换热的 Rohsenow关系式预测窄流道内高热流密度下的过冷流动沸腾换热的误差不大 ,但对于较低热流密度下的过冷流动沸腾时误差较大 ;通过最小二乘法对 Rohsenow关系式进行修正后 ,误差低于± 2 5 %。  相似文献   

10.
对常物性流体在通道内的周期性充分发展层流流动和换热特性进行了二维数值计算分析。所研究的通道是由两平行平板布置于中心线位置的一系列折流板构成。平行平板保持温度恒定,折流板则分成完全导热和绝热两种情况,对不同几何参数,Re数和Pr数下的流动和换热性能进行了数值研究。文章还给出了系统流函数图和局部换热系数分布情况。  相似文献   

11.
The research work has been conducted to assess turbulent forced convection heat transfer and friction loss behaviors for airflow through a channel fitted with a multiple 60° V-baffle turbulator. Measurements have been carried out for the channel of aspect ratio, AR = 10 and height, H = 30 mm with three different baffle blockage ratios, (e/H = 0.10, 0.20 and 0.30) and three baffle pitch spacing ratios, (PR = P / H = 1, 2 and 3) while the transverse pitch of the V-baffle is set to 2H and kept constant. The air flow rate is in terms of Reynolds numbers based on the inlet hydraulic diameter of the test channel ranging from 5000 to 25,000. The experimental results show that the V-baffle provides the drastic increase in Nusselt number, friction factor and thermal enhancement factor values over the smooth wall channel due to better flow mixing from the formation of secondary flows induced by vortex flows generated by the V-baffle. In addition, substantial increases in Nusselt number and friction factor values are found for the rise in blockage ratio and/or for the decrease in pitch ratio values. Assessing thermal performance of the V-baffled channel, the use of the V-baffle with PR = 1 and e/H = 0.10 leads to maximum thermal enhancement factor of about 1.87 at lower Reynolds number.  相似文献   

12.
Magnetohydrodynamic (MHD) free‐surface flow and heat transfer of liquid metal around a cylinder under different Reynolds numbers were simulated numerically. The effects of the application of a magnetic field on wake and vortex shedding were analyzed. The characteristics of flow fields and temperature as well as Lorentz forces under two different Reynolds numbers were presented. The results showed that magnetic field could not only change substantially the flow pattern, but also suppress turbulent viscosity and surface renewal, which degraded heat transfer. Under the same Hartmann numbers, compared with the MHD‐flow and heat transfer of lower Reynolds numbers, the turbulence intensity and interaction between free surface and wake were still stronger for higher Reynolds numbers; consequently, the heat transfer was still high. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(1): 11–19, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20189  相似文献   

13.
An experimental study of heat transfer on a horizontal rotating cylinder near a flat plate was performed. The cylinder and plate were set in a cross‐flow. Temperature distribution and coefficients of local heat transfer were measured by a Mach–Zehnder interferometer. Flow visualization was made using smoke. Rotating Reynolds numbers (Rer) and cross‐flow Reynolds numbers (Red) were varied from 0 to 2000. The spaces between cylinder and plate were varied from 1 × 10?3 m to 5 × 10?3 m. The rotating direction of cylinder was changed clockwise or counterclockwise. The following results are obtained: When the space between the rotating cylinder and flat plate is the same as the displacement thickness on the plate, the heat transfer on the cylinder near the plate has the best performance. We have procured the empirical equation of heat transfer from a rotating cylinder near the flat plate in the cross‐flow. 8 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20329  相似文献   

14.
Arbitrary directional system rotation of a channel flow can be decomposed into simultaneous componential rotations in the three orthogonal directions. In order to study its effect on turbulent heat transfer, three typical cases, i.e., combined spanwise and streamwise (Case I), streamwise and wall-normal (Case II), and wall-normal and spanwise rotations (Case III), are simulated with two of the three coordinate-axial rotations imposed on the system. In Case I, the effect of spanwise rotation dominates the heat transfer mechanism when the two componential rotation rates are comparable. However, if the streamwise rotation is much stronger than the spanwise rotation, the turbulent heat transfer can be enhanced on the two walls, but more strikingly on the suction side. In Case II, even though no explicit spanwise rotation is imposed on the system, the combined rotations also bring the enhancement/reduction of turbulent heat transfer on the pressure/suction side, respectively, which is similar to that in a spanwise rotating channel flow. In Case III, the spanwise rotation effect is still obvious, however, its effect is reduced somewhat due to the redirection of the mean flow by the wall-normal rotation.  相似文献   

15.
Present paper is performed to investigate the heat and exergy transfer characteristics of forced convection flow through a horizontal rectangular channel where open-cell metal foams of different pore densities such as 10, 20 and 30 PPI (per pore inches) were situated. All of the bounding walls of the channel are subjected to various uniform heat fluxes. The pressure drop and heat transfer characteristics are presented by two important parametric values, Nusselt number (NuH) and friction factor (f), as functions of Reynolds number (ReH) and the wall heat flux (q). The Reynolds number (ReH) based on the channel height of the rectangular channel is varied from 600 to 33?000, while the Grashof number (GrDh) ranged from approximately 105–107 depending on q. Based on the experimental data, new empirical correlations are constructed to link the NuH. The results of all cases are compared to that of the empty channel and the literature. It is found that the results are in good agreement with those cited in the references. The mean exergy transfer Nusselt number (Nue) based on the ReH, NuH, Pr and q for a rectangular channel with constant heat flux is presented and discussed.  相似文献   

16.
Heat transfer from a cylinder in axial turbulent flows   总被引:1,自引:0,他引:1  
Local convective heat transfer coefficients were measured on a two-diameter long cylinder in axial flows of air at conditions unexplored so far, by using thermochromic liquid crystals (TLC) coated on an electrically heated strip-foil consisting bonded to the external surfaces. The Reynolds numbers (Re) based on the cylinder diameter were between 8.9 × 104 and 6.17 × 105, and the flow in front of the cylinder was modified in some cases by the use of a turbulence generating grid, or by circular disc inserts of two sizes placed upstream of the cylinder. These created a major change in the local convective heat transfer coefficient distribution on the cylinder. Increase of the turbulence intensity from Tu < 0.1% to Tu = 6.7% at the same Re increased the average calculated Nusselt number Nu over the cylinder by 25%, and decreased the Nu non-uniformity over the surface. One of the flow modification inserts also reduced significantly the Nu non-uniformity. The position of flow reattachment was measured using tufts. Our heat transfer data agree well with the small amount if data published of others, when extrapolated to their conditions. Correlations between the Nu and Re in the form Nu = CRee were established and presented for the average Nu on the front, middle and rear cylinder surfaces, and the variation of the local exponent e was shown along the cylinder. Introducing a new technique, a TLC-coated heated flat plate mounted in the flow above the cylinder in the meridional plane was demonstrated to help visualize the flow field above the cylinder. A track of maximum convective coefficients on this plate was found similar in position to the stream line dividing the forward and backward flows in a case measured for the separated flow in a past study.  相似文献   

17.
波纹通道板间距对通道内流动与换热影响的数值研究   总被引:4,自引:0,他引:4  
应用数值模拟方法,分析了流体在不同板间距的正弦型波纹通道内,周期性充分发展的稳态层流流动与换热的特性;探讨了板间距对流动与换热的影响,并对其综合性能进行评估。结果表明:在Re相同的条件下,通道内所形成旋涡的尺寸随相对间距A/H(波长/间距)的减小而增大。  相似文献   

18.
This paper presents a numerical analysis of laminar periodic flow and heat transfer in a rectangular constant temperature-surfaced channel with triangular wavy baffles (TWBs).The TWBs were mounted on the opposite walls of the rectangular channel with inline arrangements.The TWBs are placed on the upper and lower walls with attack angle 45?.The numerical is performed with three dif-ferent baffle height ratios (BR=b/H=0.05 0.3) at constant pitch ratio (PR) of 1.0 for the range 100 ≤ Re ≤ 1000.The computational results are shown in the topology of flow and heat transfer.It is found that the heat transfer in the channel with the TWB is more effective than that without baffle.The in-crease in the blockage ratio,BR leads to a considerable increase in the Nusselt number and friction factor.The results indicate that at low BR,a fluid flow is significantly disturbed resulting in inefficient heat transfer.As BR increases,both heat transfer rate in terms of Nusselt number and pressure drop in terms of friction factor increase.Over the range examined,the maximum Nu/Nu0 of 7.3 and f/f0 of 126 are both found with the use of the baffles with BR=0.30 at Re=1000.In addition,the flow structure and temperature field in the channel with TWBs are also reported.  相似文献   

19.
Direct numerical simulation (DNS) was performed for the turbulent heat transfer in a channel flow. In the present study, the effect of the thermal boundary condition was examined. DNS was carried out for varying streamwise thermal boundary conditions (Reτ = 180) with Pr = 0.71 to obtain statistical mean temperatures, temperature variances, budget terms, and time scale ratios. The results obtained indicate that the time scale ratio varies along the stream direction. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 35(4): 265–278, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20114  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号