首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-performance compact heat sinks have been developed for the effective cooling of high-density LSI packaging. Heat transfer and pressure loss characteristics of the heat sinks in both air-cross-flow and air-jet cooling have been experimentally studied. The present heat sinks were of plate-fin and pin-fin arrays with a fin pitch of 0.7 mm. The plate-fin heat sinks had higher cooling performance than the pin-fin heat sinks in the range of large airflow rates both in air-cross-flow and air-jet cooling. The thermal conductance in cross-flow cooling was 20 or 40% larger than that in jet cooling. The correlation of Colburn j-factor/Fanning friction factor versus the Reynolds number for the present heat sinks was found to be very close to that of a conventional large-size heat exchanger. © Scripta Technica, Heat Trans Asian Res, 28(8): 687-705, 1999  相似文献   

2.
The cooling performance of a plate‐fin‐type heat sink equipped with a cooling fan was investigated experimentally. The heat sink was 80 mm long, 43 mm wide, and 24 mm in height (including the 4‐mm‐thick base). The cooling fan was 40 × 40 × 15 mm and was set to direct the air flow vertically in the downstream half of the heat sink. We focused on the influence of the height (which varied from 5 to 20 mm) that the fan was set at, on the heat transfer coefficient of the heat sink. The maximum value of the heat transfer coefficient was achieved at a setting height of 5 mm. At this height, the volumetric heat transfer coefficient was 1.8 times as high as that in a parallel flow under the same fan power. This result indicates that the cooling performance of heat sinks with a cooling fan can be improved by using this kind of compact structure. © 2001 Scripta Technica, Heat Trans Asian Res, 30(6): 512–520, 2001  相似文献   

3.
In the present study, compact water cooling of high‐density, high‐speed, very‐large‐scale integrated (VLSI) circuits with the help of microchannel heat exchangers were investigated analytically. This study also presents the result of mathematical analysis based on the modified Bessel function of laminar fluid flow and heat transfer through combined conduction and convection in a microchannel heat sink with triangular extensions. The main purpose of this paper is to find the dimensions of a heat sink that give the least thermal resistance between the fluid and the heat sink, and the results are compared with that of rectangular fins. It is seen that the triangular heat sink requires less substrate material as compared to rectangular fins, and the heat transfer rate per unit volume has been almost doubled by using triangular heat sinks. It is also found that the effectiveness of the triangular fin is higher than that of the rectangular fin. Therefore, the triangular heat sink has the ability to dissipate large amounts of heat with relatively less temperature rise for the same fin volume. Alternatively, triangular heat sinks may thus be more cost effective to use for cooling ultra‐high speed VLSI circuits than rectangular heat sinks.  相似文献   

4.
In the present study, the liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU is studied. Six mini-rectangular fin heat sinks with two different material types and three different channel widths are fabricated from the copper or aluminum with the length, the width and the base thickness of 37, 37, 5 mm, respectively. The de-ionized water is used as coolant. Effects of channel width, coolant flow rate, material type of heat sink and run condition of PC on the CPU temperature are considered. The liquid cooling in mini-rectangular fin heat sink with thermoelectric is compared with the other cooling techniques. The thermoelectric has a significant effect on the CPU cooling of PC. However, energy consumption is also increased. The results of this study are expected to lead to guidelines that will allow the design of the cooling system with improved heat transfer performance of the electronic equipments.  相似文献   

5.
This work assesses the performance of plate-fin heat sinks in a cross flow. The effects of the Reynolds number of the cooling air, the fin height and the fin width on the thermal resistance and the pressure drop of heat sinks are considered. Experimental results indicate that increasing the Reynolds number can reduce the thermal resistance of the heat sink. However, the reduction of the thermal resistance tends to become smaller as the Reynolds number increases. Additionally, enhancement of heat transfer by the heat sink is limited when the Reynolds number reaches a particular value. Therefore, a preferred Reynolds number can be chosen to reduce the pumping power. For a given fin width, the thermal performance of the heat sink with the highest fins exceeds that of the others, because the former has the largest heat transfer area. For a given fin height, the optimal fin width in terms of thermal performance increases with Reynolds number. As the fins become wider, the flow passages in the heat sink become constricted. As the fins become narrower, the heat transfer area of the heat sink declines. Both conditions reduce the heat transfer of the heat sink. Furthermore, different fin widths are required at different Reynolds numbers to minimize the thermal resistance.  相似文献   

6.
This paper describes experimental and theoretical investigations of heat sinks with different base plate material mounted on CPUs. The thermal model of the computer system with heat sinks which is created using Gambit (for preprocessing) and the simulation is carried out using Fluent (for solver execution and post processing). The following parameters are considered: fin thickness, fin height, and number of fins. Primarily in this paper different base plate thickness and base plate materials are optimized for maintaining the cost and thermal performance of a heat sink. In this research work, the thermal model of the computer system with a slot parallel plate fin heat sink design has been selected, and the fluid flow and thermal flow characteristics of heat sinks are studied. The slot parallel plate fin heat sinks have been used with copper base plates and carbon carbon composite (CCC) base plates to enhance the heat dissipation. The results and conclusion obtained in this present work are found to be in good agreement with numerical results. A complete computer chassis with slot parallel plate heat sinks is investigated varying the thickness of base plate, and the performances of the heat sinks are compared. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20342  相似文献   

7.
This work investigates the effects of a shield on the thermal and hydraulic characteristics of plate-fin vapor chamber heat sinks under cross flow cooling. The surface temperature distributions of the vapor chamber heat sinks are measured using infrared thermography. The thermal-fluid performance of vapor chamber heat sinks with a shield is determined by varying the fin width, the fin height, the fin number and the Reynolds number. The experimental data thus obtained are compared with those without a shield.Experimental results indicate that the maximum surface temperature of the vapor chamber heat sink is effectively reduced by adding the shield, which forces more cooling fluid into the inter-fin channel to exchange heat with the heat sink. However, using the shield increases the pressure drop across the heat sink. The experimental data also show that the enhancement of the heat transfer increases with the Reynolds number, but the improvement declines as the Reynolds number increases. When the pumping power and heat transfer are simultaneously considered, vapor chamber heat sinks with thinner, higher or more fins exhibit better thermal-hydraulic performance.  相似文献   

8.
In this article, we study the thermal performance of phase-change material (PCM)-based heat sinks under cyclic heat load and subjected to melt convection. Plate fin type heat sinks made of aluminum and filled with PCM are considered in this study. The heat sink is heated from the bottom. For a prescribed value of heat flux, design of such a heat sink can be optimized with respect to its geometry, with the objective of minimizing the temperature rise during heating and ensuring complete solidification of PCM at the end of the cooling period for a given cycle. For given length and base plate thickness of a heat sink, a genetic algorithm (GA)-based optimization is carried out with respect to geometrical variables such as fin thickness, fin height, and the number of fins. The thermal performance of the heat sink for a given set of parameters is evaluated using an enthalpy-based heat transfer model, which provides the necessary data for the optimization algorithm. The effect of melt convection is studied by taking two cases, one without melt convection (conduction regime) and the other with convection. The results show that melt convection alters the results of geometrical optimization.  相似文献   

9.
A three-dimensional heat sink module design problem is examined in this work to estimate the optimum design variables using the Levenberg–Marquardt Method (LMM) and a general purpose commercial code CFD-ACE+. Three different types of heat sinks are designed based on the original fin arrays with a fixed volume. The objective of this study is to minimize the maximum temperature in the fin array and to determine the best shape of heat sink. Results obtained by using the LMM to solve this 3-D heat sink module design problem are firstly justified based on the numerical experiments and it is concluded that for all three cases, the optimum fin height H tends to become higher and optimum fin thickness W tends to become thinner than the original fin array, as a result both the fin pitch D and heat sink base thickness U are increased. The maximum temperature for the designed fin array can be decreased drastically by utilizing the present fin design algorithm. Finally, temperature distributions for the optimal heat sink modules are measured using thermal camera and compared with the numerical solutions to justify the validity of the present design.  相似文献   

10.
Minichannel heat sink geometries with varying fin spacing were tested with de‐ionized water and MWCNT (1 wt %) nanofluid to evaluate their performance with flow components of a liquid cooling kit. Four heat sinks with fin spacing of 0.2 mm, 0.5 mm, 1.0 mm, and 1.5 mm were used in this investigation. Heat sink base temperature was analogous to processor operating temperature which was the prime parameter of interest in this investigation. The base temperature decreased by reducing the fin spacing and using multiwalled carbon nanotube (MWCNT) nanofluid. The lowest value of heat sink base temperature recorded was 49.7 °C at a heater power of 255 W by using a heat sink of 0.2 mm fin spacing and MWCNT nanofluid as a coolant. Moreover, as a result of reduced fin spacing and using MWCNT nanofluid as a coolant the value of overall heat transfer coefficient increased from 1200 W/m2K to 1498 W/m2K, translating to about a 15% increase. The value of thermal resistance also dropped by reducing the fin spacing and using MWCNT nanofluid. The most important aspect of the study is that the heat sinks and MWCNT nanofluid proved to be compatible with the pump and radiator of the commercial CPU liquid cooling kit. The pump was capable to handle the pressure drop which resulted by reducing the heat sink fin spacing and by using MWCNT nanofluid. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res, 43(7): 653–666, 2014; Published online 11 November 2013 in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21107  相似文献   

11.
This paper describes the use of our previous study's prediction procedures for calculating thermal resistance and pressure drop. The procedures are used in the optimization of heat sink geometries for impingement air-cooling of LSI packages. Two types of heat sinks are considered: ones with longitudinal fins and ones with pin fins. We optimized the heat sink geometries by evaluating 16 parameters simultaneously. The parameters included fin thickness, spacing, and height. For the longitudinal fins, the optimal fin thicknesses were found to be between 0.12 and 0.15 mm, depending on which of the four types of fans were used. For pin fins, the optimal pin diameters were between 0.39 and 0.40 mm. Under constant pumping power, the optimal thermal resistance of the longitudinal fins was about 60% that of the pin fins. For both types of heat sinks, the optimal thermal resistance for four off-the-shelf fans was only slightly (maximum about 1%) higher than the theoretical optimum for the same pumping power. When manufacturing cost performance is considered, the most economical fin thickness and diameter are about 5 to 10 times higher than the optimal values calculated without respect for manufacturing costs. These values almost correspond to the actual limits of extrusion and press heat-sink manufacturing processes. © 1999 Scripta Technica, Heat Trans Asian Res, 28(2): 138–151, 1999  相似文献   

12.
《Applied Thermal Engineering》2007,27(14-15):2473-2482
The parallel-plain fin (PPF) array structure is widely applied in convective heat sinks in order to create extended surface for the enhancement of heat transfer. In the present study, for investigating the influences of designing parameters of PPF heat sink with an axial-flow cooling fan on the thermal performance, a systematic experimental design based on the response surface methodology (RSM) is used. The thermal resistance and pressure drop are adopted as the thermal performance characteristics. Various designing parameters, such as height and thickness of fin, width of passage between fins, and distance between the cooling fan and the tip of fins, are explored by experiment. Those parameters affect the structure arrangement, geometry of fins and the status of impinging jet from an axial-flow cooling fan installed over the heat sink. A standard RSM design called a central composite design is selected as experimental plan for the four parameters mentioned above. An effective procedure of response surface methodology (RSM) has been proposed for modeling and optimizing the thermal performance characteristics of PPF heat sink with the design constrains. The most significant influential factors for minimizing thermal resistance and pressure drop have been identified from the analysis of variance. The confirmation experimental results indicate that the proposed model is reasonably accurate and can be used for describing the thermal resistance and pressure drop with the limits of the factors studied. The optimum designing parameters of PPF heat sink with an axial-flow cooling fan under constrains of mass and space limitation, which are based on the quadratic model of RSM and the sequential approximation optimization method, are found to be fin height of 60 mm, fin thickness of 1.07 mm, passage width between fins of 3.32 mm, and distance between the cooling fan and the tip of fins of 2.03 mm.  相似文献   

13.
In this study, thermal performance of a vertical plate-fin heat sink under natural convection was optimized for the case in which the fin thickness varied in the direction normal to the fluid flow. For this optimization, the averaging approach presented in an earlier paper for the case of the heat sinks under forced convection was extended to study the performance of heat sinks under natural convection. In the case of an air-cooled heat sink, the thermal resistance decreases by up to 10% when the fin thickness is allowed to increase in the direction normal to the fluid flow. However, the difference between the thermal resistances of heat sinks with uniform thickness and the heat sinks with variable thickness decreases as the height decreases and as the heat flux decreases.  相似文献   

14.
Since vapor chambers exhibit excellent thermal performance, they are suited to use as bases of heat sinks. This work experimentally studies the thermal performance of plate-fin vapor chamber heat sinks using infrared thermography. The effects of the width, height and number of fins and of the Reynolds number on the thermal performance are considered. Experimental data are compared with corresponding data for conventional aluminum heat sinks. The results show that generated heat is transferred more uniformly to the base plate by a vapor chamber heat sink than by a similar aluminum heat sink. Therefore, the maximum temperature is effectively reduced. The overall thermal resistance of the vapor chamber heat sink declines as the Reynolds number increases, but the strength of the effect falls. The effect of the fin dimensions on the thermal performance is stronger at a lower Reynolds number. At a low Reynolds number, a suitable number of fins must be chosen to ensure favorable thermal performance of the vapor chamber heat sink. However, at a high Reynolds number, the thermal performance improves as the fin number increases.  相似文献   

15.
The slotted fin concept was employed to improve the air cooling performance of plate-fin in heat sinks. Numerical simulations of laminar heat transfer and flow pressure drop were conducted for the integral plate fin, discrete plate fin and discrete slotted fin heat sinks. It is found that the performance of the discrete plate fin is better than that of the integral continuum plate fin and the performance of slotted fin is better than that of the discrete plate fin at the same pumping power of the fan. A new type of heat sink characterized by discrete and slotted fin surfaces with thinner fins and smaller spaces between fins is then proposed. Preliminary computation shows that this type of heat sink may be useful for the next generation of higher thermal load CPUs. The limit of cooling capacity for air-cooling techniques was also addressed.  相似文献   

16.
In the present study, the heat transfer characteristics of nanofluids cooling in the mini-rectangular fin heat sink are studied. The heat sinks with three different channel heights are fabricated from the aluminum by the wire electrical discharge machine with the length, width and base thickness of 110, 60, and 2 mm, respectively. The nanofluids are the mixture of de-ionized water and nanoscale TiO2 particles. The results obtained from the nanofluids cooling in mini-rectangular fin heat sink are compared with those from the de-ionized water cooling method. Effects of the inlet temperature of nanofluids, nanofluid Reynolds number, and heat flux on the heat transfer characteristics of mini-rectangular fin heat sink are considered. It is found that average heat transfer rates for nanofluids as coolant are higher than those for the de-ionized water as coolant. The results of this study are of technological importance for the efficient design of cooling systems of electronic devices to enhance cooling performance.  相似文献   

17.
A theoretical analysis on the cooling enhancement by applying evaporative cooling to an air-cooled finned heat exchanger is presented in this work. A two-dimensional model on the heat and mass transfer in a finned channel is developed adopting a porous medium approach. Based on this model, the characteristics of the heat and mass transfer are investigated in a plate-fin heat exchanger with the interstitial surface fully covered by thin water film. Assuming that the Lewis number is unity and the water vapor saturation curve is linear, exact solutions to the energy and vapor concentration equations are obtained. The cooling effect with application of evaporative cooling was found to be improved considerably compared with that in the sensible cooler. This is because the thermal conductance between the fin and the air increases due to the latent heat transfer caused by the water evaporation from the fin surface. It is also found that the cooling enhancement depends greatly on the fin thickness. If the fin is not sufficiently thick, the cooling enhancement by the evaporative cooling decreases since the fin efficiency drops considerably due to the water evaporation from the fin surface. The fin thickness in the evaporative cooler should be increased larger than that in the sensible cooler to take full advantage of the cooling enhancement by the water evaporation.  相似文献   

18.
A multi-objective thermal design optimization and comparative study of electronics cooling technologies is presented. The cooling technologies considered are: continuous parallel micro-channel heat sinks, in-line and staggered circular pin-fin heat sinks, offset strip fin heat sinks, and single and multiple submerged impinging jet(s). Using water and HFE-7000 as coolants, Matlab’s multi-objective genetic algorithm functions were utilized to determine the optimal thermal design of each technology based on the total thermal resistance and pumping power consumption under constant pressure drop and heat source base area of 100 mm2. Plots of the Pareto front indicate a trade-off between the total thermal resistance and pumping power consumption. In general, the offset strip fin heat sink outperforms the other cooling technologies.  相似文献   

19.
Erfan Rasouli 《传热工程》2016,37(11):994-1011
Single-phase heat transfer and pressure drop of liquid nitrogen in microscale heat sinks are studied experimentally in this paper. Effects of geometrical variations are characterized on the thermofluidic performance of staggered microscale pin fin heat sinks. Pitch-to-diameter ratio and aspect ratio of the micro pin fins are varied. The pin fins have square shape with 200 or 400 μm width and are oriented at 45 degrees to the flow direction. Thermal performance of the heat sinks is evaluated for Reynolds numbers (based on pin fin hydraulic diameter) from 108 to 570. Results are presented in a nondimensional form in terms of friction factor, Nusselt number, and Reynolds number and are compared with the predictions of existing correlations in the literature for micro pin fin heat sinks. Comparison of flow and heat transfer performance of the micro pin fin heat sinks reveals that at a particular critical Reynolds number of ~250, pin fin heat sinks with the same aspect ratio but larger pitch ratio show a transition in both friction factor and Nusselt number. In order to better characterize this transition, visualization experiments were performed with the Fluorinert PF5060 using an infrared camera. At the critical Reynolds number, for the larger pitch ratio pin fin heat sink, surface thermal intensity profiles suggest periodic flapping of the flow behind the pin fins at a Strouhal number of 0.227.  相似文献   

20.
A heat sink is a thermal management system for electrical and electronic appliances whose performance is a function of fin geometry, arrangement, and flow field. Earlier research addressed the enhancement in the heat dissipation capacity of the sink with a change in the geometry of the fin. However, the change should increase the heat transfer rate per unit weight and per unit volume. One such attempt is made in the present work, which deals with numerical forced convection heat transfer simulation over a pin fin with three different surface modifications, namely, threads, equilateral triangular perforation, and threads with perforations. A numerical investigation is performed for 0.5773–2.5574 mm pitch of threads, 3–4.8 mm size of perforation, and 2–8 m/s velocities of air. To describe the flow pattern around the fin and its variation with surface modification, streamline profiles are drawn which reveals that the fluid–solid interaction is improved either with threaded or perforated surface and is maximum for threaded–perforated fin. The enhanced convection rates bring down the local fin temperature and the maximum fin temperature, where the drop is more for the threaded surface than that of the perforated surface because of turbulence. A 10° drop in maximum fin temperature is achieved by replacing a plain pin fin with a threaded–perforated pin fin, and the drop is 8° with threads alone and 6° only with perforations. The increased fineness of threads and size of perforation further bring down the maximum fin temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号