首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CuGaSe2 thin films have been prepared by rapid thermal processing of stacked elemental layers on different substrates. The film homogeneity across the depth and the influence of the substrate used have been investigated mainly by means of photoluminescence spectroscopy. The photoluminescence spectra could be divided into five spectral ranges: emissions from Ga-rich phases (above 1.75 eV), band edge emissions (1.72 eV), emissions involving shallow levels (VCu, VSe), a broad donor-acceptor-pair transition (1.4–1.55 eV), and emissions from deep levels (below 1.4 eV). All films grown from the conventional precursor stack showed inhomogeneities, which could be avoided by modifications of the precursor stack. Investigations on the growth on different substrates revealed the best crystalline properties for films grown on sapphire. In contrast to films grown on floating glass the difference in quality to CuGaSe2 on Mo was rather small. This underlines the suitability of Mo-coated floating glass as cheap substrates for thin-film solar cells.  相似文献   

2.
CuGaSe2 thin films with thicknesses of about 2 μm were prepared by flash and single source evaporation onto mica and (1 1 0)-oriented ZnSe substrates in the substrate temperature range 150–450°C. The obtained polycrystalline CuGaSe2 films had the chalcopyrite structure with the predominant growth direction 2 2 1. Hall effect, conductivity and luminescence measurements have been carried out on CuGaSe2 thin films and source materials: CuGaSe2 single crystals grown by Bridgman technique and by chemical vapour transport using I2 as transport agent. All films and crystals are p-type. Two acceptor levels with ionization energies EA150–56 meV and EA2130–150 meV have been identified as due to Ga vacancy and presence of Se atoms on interstitial sites respectively.  相似文献   

3.
CuGaSe2–GaAs heterojunctions were fabricated by fast evaporation of polycrystalline CuGaSe2 from a single source on n-type GaAs substrates. The best CuGaSe2–GaAs photocell (without an antireflective coating) exhibited an efficiency of 11.5%, Jsc=32 mA/cm2, Voc=610 mV and FF=0.60. The spectral distribution of photosensitivity of CuGaSe2–GaAs junctions extends from 400 to 900 nm. The CuGaSe2 films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. XRD analysis indicated that the thin films were strongly oriented along the (1 1 2) plane. SEM studies of CuGaSe2 films showed nearly stoichiometric composition with grain size about 1–2 μm. The energy dispersive X-ray spectroscopy (EDX) analysis of Cu concentration distribution in n-type GaAs showed that Cu diffused from the film into n-type GaAs during the growth process resulting in formation of the latent p–n homojunction in substrate. The diffusion coefficient of Cu in GaAs at growth temperature (520°C) estimated from EDX measurements was 6×10−8 cm2/s.  相似文献   

4.
CdO and Cu2O thin films have been grown on glass substrates by chemical deposition method. Optical transmittances of the CdO and Cu2O thin films have been measured as 60–70% and 3–8%, respectively in 400–900 nm range at room temperature. Bandgaps of the CdO and Cu2O thin films were calculated as 2.3 and 2.1 eV respectively from the optical transmission curves. The X-ray diffraction spectra showed that films are polycrystalline. Their resistivity, as measured by Van der Pauw method yielded 10−2–10−3 Ω cm for CdO and approximately 103 Ω cm for Cu2O. CdO/Cu2O solar cells were made by using CdO and Cu2O thin films. Open circuit voltages and short circuit currents of these solar cells were measured by silver paste contacts and were found to be between 1–8 mV and 1–4 μA.  相似文献   

5.
Chemical vapor deposition (CVD) in an open tube system was employed to deposit single-phase CuGaSe2 thin films on plain and Mo-coated glass substrates. The use of HCl and ternary CuGaSe2 source material resulted in non-stoichiometric volatilization of the source material. The use of binary source materials – Cu2Se and Ga2Se3 – in combination with I2 and HCl as the respective transport agents yielded single-phase CuGaSe2 thin films while the source materials were volatilized stoichiometrically. Mo/CuGaSe2/CdS/ZnO devices were fabricated from these samples exhibiting an open-circuit voltages up to Voc=853 mV.  相似文献   

6.
Cu(In,Ga)Se2 (CIGS) thin films were grown by the three-stage process using a rf-plasma cracked Se-radical beam source. CuGaSe2 (CGS) films grown at a maximum substrate temperature of 550 °C and CuInSe2 (CIS) and CIGS films grown at the lower temperature of 400 °C exhibited highly dense surfaces and large grain size compared with films grown using a conventional Se-evaporative source. This result is attributed to the modification of the growth kinetics due to the presence of active Se-radical species and enhanced surface migration during growth. The effect on CIGS film properties and solar cell performance has been investigated. Enhancements in the cell efficiencies of 400 °C-grown CIS and CIGS solar cells have been demonstrated using a Se-radical source.  相似文献   

7.
The growth conditions, the composition and the structural, optical and electrical properties of thin films of CuGaSe2 and CuGaTe2 have been studied using “flash” and “slow” evaporation in vacuum. Single phase films, when analyzing the absorption coefficient, present several energy gaps. For CuGaSe2, they are 1.59, 1.66, 2.03 and 2.11 eV, for CuGaTe2 1.23 and 1.89 eV. Both the CuGaSe2 and CuGaTe2 evaporated films are p-type; the resistivities, carrier densities and mobilities are appropriate for thin film solar cells.  相似文献   

8.
The piezoelectric photoacoustic (PPA) signals for Cu-rich CuGaSe2 (CGS) /GaAs (0 0 1) epitaxial layer (Cu/Ga=1.09–2.16) grown by molecular beam epitaxy (MBE) were successfully obtained at liquid-nitrogen temperature. The bandgap energies of CGS (A-band) decreased and GaAs was not almost changed with increasing the Cu/Ga ratios. This phenomenon was very similar to that of free exciton (FE) by photoluminescence (PL) and the lattice parameter c by X-ray diffraction (XRD) measurements.  相似文献   

9.
Quasi-solid-state dye-sensitized solar cells with enhanced performance were made by using nanocrystalline TiO2 films without any template deposited on plastic or glass substrates at low temperature. A simple and benign procedure was developed to synthesize the low-temperature TiO2 nanostructured films. According to this method, a small quantity of titanium isopropoxide (TTIP) was added in an ethanolic dispersion of TiO2 powder consisting of nanoparticles at room temperature, which after alkoxide's hydrolysis helps to the connection between TiO2 particles and to the formation of mechanically stable thick films on plastic or glass substrates. Pure TiO2 films without any organic residuals consisting of nanoparticles were formed with surface area of 56 m2/g and pore volume of 0.383 cm3/g similar to that obtained for Degussa-P25 powder. The structural properties of the films were characterized by microscopy techniques, X-ray diffractometry, and porosimetry. Overall solar to electric energy conversion efficiencies of 5.3% and 3.2% (under 1sun) were achieved for quasi-solid-state dye-sensitized solar cells employing such TiO2 films on F:SnO2 glass and ITO plastic substrates, respectively. Thus, the quasi-solid-state device based on low-temperature TiO2 attains a conversion efficiency which is very close to that obtained for cells consisting of TiO2 nanoparticles sintered at high temperature.  相似文献   

10.
The transfer of monocrystalline Si films enables the fabrication of efficient thin film solar cells on glass or plastic foils. Chemical vapor deposition serves to epitaxially deposit Si on quasi-monocrystalline Si films obtained from thermal crystallization of a double-layer porous Si film on a Si wafer. A separation layer that forms during this crystallization process allows one to separate the epitaxial layer on top of the quasi-monocrystalline film from the starting Si wafer after solar cell processing. Independently confirmed thin film solar cell efficiencies are 15.4% and 16.6% for thin film solar cells transferred to a glass superstrate with a total Si film thickness of 24.5 and 46.5 μm, respectively, and a cell area of 4 cm2. Device simulations indicate an efficiency potential above 20%.  相似文献   

11.
The effects of sodium on off-stoichiometric Cu(In,Ga)Se2 (CIGS)-based thin films and solar cells were investigated. The CIGS-based films were deposited with intentionally incorporated Na2Se on Mo-coated SiOx/soda-lime glass substrates by a multi-step process. By sodium control technique high-efficiency ZnO : Al/CdS/CIGS solar cells with efficiencies of 10–13.5% range were obtained over an extremely wide Cu/(In + Ga) ratio range of 0.51–0.96, which has great merit for the large-area manufacturing process. The improved efficiency in the off-stoichiometric regions is mainly attributed to the increased acceptor concentration and the formation of the Cu(In,Ga)3Se5 phase films with p-type conductvity. A new type of solar cell with p-type Cu(In,Ga)3Se5 phase absorber materials is also suggested.  相似文献   

12.
Cu2ZnSnS4 (CZTS) absorbers were grown by sulfurization of Cu/ZnSn/Cu precursors in sulfur atmosphere. The reaction mechanism of CZTS formation from the precursor was analyzed using XRD and Raman spectroscopy. The films with a single phase CZTS were formed at 560 and 580 °C by sulfurization for 30 min. The film grown at 560 °C showed bi-layer morphology with grooved large grains on the top and dense small grains near the bottom of the film. On the other hand, the film grown at 580 °C showed large grains with grooves that are extended from surface top to bottom of the film. The solar cell fabricated with the CZTS film grown at 560 °C showed the best conversion efficiency of 4.59% for 0.44 cm2 with Voc=0.545 V, Jsc=15.44 mA/cm2, and FF=54.6. We found that further improvement of the microstructure of CZTS films can increase the efficiency of CZTS solar cells.  相似文献   

13.
Zn3P2 semiconductor thin films were prepared by electrodeposition technique form aqueous solutions. The deposition mechanism was investigated by cyclic voltammetry technique. Crystal structure, morphology and composition of as deposited and annealed Zn3P2 thin films grown on SnO2/glass substrates were determined by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analysis. X-ray diffraction data indicated the formation of Zn3P2 as the predominant phase for both as-deposited and annealed films. The compositions of the deposited films were controlled by the bath temperature, deposition potential and Zn/P ratio in the solution.The dark current–voltage measurements of SnO2/Zn3P2/C devices indicated a rectifying behavior and a reverse saturation current density of 1.7×10−7 A/cm2, which is in good accordance with that obtained from films prepared using vacuum technique. Also, the capacitance–voltage measurements showed that the number of interface states and the built in potential are in the order of 5×10−9 cm−3 and 0.85 V, respectively. These preliminary results for Zn3P2 thin films reveal that, this semiconductor material can be used for solar cell applications.  相似文献   

14.
This paper describes the investigations of CIS-based solar cells with a new InxSey (IS) buffer layer. Studies were concentrated on determining the deposition conditions to get InxSey thin films with adequate properties to be used in substitution of the CdS buffer layer, usually employed in the fabrication of this type of devices. Before the solar cell fabrication, the buffer layers grown by evaporation of the In2Se3 compound were characterized through transmittance and X-ray diffraction measurements. It was found that good results can be obtained using indium selenide film as the buffer layer, grown in the In2Se3 phase.Solar cells with structure Mo/CIS/In2Se3/ZnO were fabricated. The ZnO layer was deposited by reactive evaporation and the absorber CIS layer was grown on Mo by a two-stage process. The preliminary results obtained with this type of solar cells are Jsc=30.8 mA/cm2, Voc=0.445 V, FF≈0.6 and η=8.3% with an irradiance of 100 mW/cm2. Solar cells fabricated using a CdS buffer layer deposited by CBD on CIS substrate, prepared under the same conditions used in the fabrication of Mo/CIS/In2Se3/ZnO cells, gave the following results: Voc=0.43 V, Jsc=34 mA/cm2, FF≈0.63 and η=9.2%.  相似文献   

15.
The ZnSe/CuGaSe2 heterojunctions were fabricated by flash evaporation technique of CuGaSe2 onto the (110) surface of ZnSe crystals. CuGaSe2 layers had thickness 2–4 μm and showed a hole concentration up to (1.5–18.0)×1018 cm−3 and mobility μ4–24 cm2 V−1 s−1 at 300 K. The charge carrier concentration in ZnSe crystals at 300 K was n=5.6×1016 cm−3 and their mobility μ=300 cm2 V−1 s−1. The investigated ZnSe/CuGaSe2 heterojunctions have at the interface an intermediate layer with a thickness of 450–750 Å and a linear graded band gap as well as an i-ZnSe compensated layer with a thickness of 1–2 μm and resistivity ρ108–109 Ω cm. The i-ZnSe layer is highly compensated due to the presence of Cu acceptor impurities. In this layer the Fermi level position EcF0690 meV and a trap level position EtF017 meV were determined. The total trap concentration in the i-ZnSe layer is Nt5×1014 cm−3. The mean free path of excited charge carriers in the graded band gap region was calculated as λ55 Å. On the basis of experimental data analysis of electrophysical properties of both ZnSe/CuGaSe2 heterojunctions and constituent materials the energetic band diagram of the investigated heterostructures is proposed. The current transport mechanism through ZnSe/CuGaSe2 heterojunctions is consequently elucidated.  相似文献   

16.
We report on boron-doped μc-Si:H films prepared by hot-wire chemical vapor deposition (HWCVD) using silane as a source gas and trimethylboron (TMB) as a dopant gas and their incorporation into all-HW amorphous silicon solar cells. The dark conductivity of these films was in the range of 1–10 (Ω cm)−1. The open circuit voltage Voc of the solar cells was found to decrease from 840 mV at low hydrogen dilution H-dil=91% to 770 mV at high H-dil =97% during p-layer deposition which can be attributed to the increased crystallinity at higher H-dil and to subsequent band edge discontinuity between μc-Si:H p- and amorphous i-layer. The short circuit current density Jsc and the fill factor FF show an optimum at an intermediate H-dil and decrease for the highest H-dil. To improve the conversion efficiency and the reproducibility of the solar cells, an amorphous-like seed layer was incorporated between TCO and the bulk p-layer. The results obtained until now for amorphous solar cells with and without the seed layer are presented. The I–V parameters for the best p–i–n solar cell obtained so far are Jsc=13.95 mA/cm2, Voc=834 mV, FF=65% and η=7.6%, where the p-layers were prepared with 2% TMB. High open circuit voltages up to 847 mV could be achieved at higher TMB concentrations.  相似文献   

17.
Thin CuGaSe2 films were deposited by vacuum co-evaporation and characterized for their structure, properties and performance as hydrogen-evolving photoelectrodes. The 0.9 μm thick films were nearly stoichiometric with very slight copper deficiency and showed polycrystalline structure with grain sizes of tens of nanometers. An electrode based on such a film was demonstrated operating with outdoor 1-sun photocurrent of up to 13 mA/cm2. Spectral response data show significant incident-photon-to-current efficiency throughout the visible spectrum, peaking at 63% at 640 nm. Photocurrent output under simulated 1-sun Air Mass 1.5 light was stable over 4 h. Unassisted water-splitting is not possible due to high band edge positions, but operation in tandem configuration with a suitable bottom junction is feasible.  相似文献   

18.
The investigation of AlxGa1−xAs/GaAs solar cells is carried out by means of both metalorganic chemical vapor deposition (MOCVD) and liquid-phase epitaxial (LPE) technique. The measurements of illuminated IV characteristics, dark IV characteristics and quantum efficiencies were performed for the GaAs solar cells made in author's laboratory. The measuring results revealed that the quality of materials in GaAs solar cell's structures is the key factor for getting high-efficient GaAs solar cells, but the effect of post-growth technology on the performances of GaAs solar cells is also very strong. The 21.95% (AM0, 2×27 cm2, 25°C) high conversion efficiency in a typical GaAs solar cell has been achieved owing to improving the quality of materials as well as optimizing the post-growth technology of devices.  相似文献   

19.
Transparent ZnO films were prepared by rf magnetron sputtering, and their electrical, optical, and structural properties were investigated under various sputtering conditions. Aluminum-doped n-type(n-ZnO) and undoped intrinsic-ZnO (i-ZnO) layers were deposited on a glass substrate by incorporating different targets in the same reaction chamber. The n-ZnO films were strongly affected by argon ambient pressure and substrate temperature, and films deposited at 2 mTorr and 100°C showed superior properties in resistivity, transmission, and figure of merit (FOM). The sheet resistance of ZnO film was less dependent on film thickness when the substrate was heated during deposition. These positive effects of elevated substrate temperature are presumably attributed to the rearrangement of the sputtered atoms by the heat energy. Also, the films are electrically uniform through the 5 cm×5 cm substrate. The maximum deviation in sheet resistance is less than 10%. All of the films showed strong (0 0 2) diffraction peak near 2θ =34°. The undoped i-ZnO films deposited in the mixture of argon and oxygen gases showed high transmission properties in the visible range, independent of the Ar/O2 ratio, while resistivity rose with increased oxygen partial pressure. The Cu(In,Ga)Se2 solar cells, incorporating bi-layer ZnO films (n-ZnO/i-ZnO) as window layer, were finally fabricated. The fabricated solar cells showed 14.48% solar efficiency under AM 1.5 conditions (100 mW/cm2).  相似文献   

20.
Current–voltage characteristics of ZnO/CdS/CuGaSe2 single crystal solar cells measured at room temperature are investigated depending on illumination intensity. The characteristics can be described using the two-diode model, indicating two current transport mechanisms acting in the cells. The first and dominant mechanism is recombination of carriers at the interface between CdS and CuGaSe2. The second one is recombination in the depletion region, which has been found to have a small effect on the solar cell photovoltaic performance. Both the diode ideality factor and the saturation current density of the dominant diode increase under illumination. A model based on interface recombination can explain these results. This model allows the estimation of diffusion voltage, capture cross-section of holes at the interface and mobility of electrons in the CdS layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号