首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
量化200 nm陶瓷膜脱除乳清蛋白、乳糖、灰分和钙的能力。在50℃条件下,对脱脂乳进行3倍浓缩,之后连续2次补水至原体积进行稀释过滤,浓缩倍数均为3,最终得到3次滤液,计算各组分总脱除率。结果表明乳糖脱除率为85.81%,α-乳白蛋白脱除率为79.27%,β-乳球蛋白脱除率为71.64%,灰分脱除率为62.16%,钙脱除率为35.64%。稀释过滤完毕后膜的纯水膜通量衰减系数为89.27%,使用质量分数为2%氢氧化钠和0.5%的硝酸溶液进行清洗,膜通量的恢复系数为99.07%。  相似文献   

2.
张建友  林龙  王斌  丁玉庭 《现代食品科技》2013,29(12):2958-2963
本文研究了压力、温度、陶瓷膜孔径、蒸煮液浓度和投料方式对微滤浓缩鳀鱼蒸煮液膜通量的影响。微滤浓缩时,0.45 μm和0.14 μm陶瓷膜对蛋白质的浓缩效率相同,但选用0.14 μm陶瓷膜使整体膜浓缩效率提高;升高温度、压力等均能提高陶瓷膜通量;降低蒸煮液的浓度虽能增大陶瓷膜通量,但降低了蛋白质的浓缩效率。45 ℃浓缩时陶瓷膜通量较高,并且浓缩液的菌落总数、挥发性盐基氮(TVB-N)相对于浓缩因子的增长率最小,丙二醛(TBARS)的增长率与35 ℃、25 ℃相近。因此在温度45 ℃、压力0.3 MPa和选用0.14 μm陶瓷膜的条件下,采用间歇的投料方式作为陶瓷膜浓缩鳀鱼蒸煮液较优的操作条件。陶瓷膜清洗方面,复合清洗剂(1% NaOH+0.05% SDS)在45 ℃的清洗条件下,清洗40 min可使膜通量回复率达到98.99%,比单一清洗剂(1% NaOH)提高22.85%。  相似文献   

3.
文章研究了跨膜压力对连续式微滤膜分离技术工艺参数、分离效果及组分组成的影响。以脱脂乳为原料,使用0.1μm陶瓷微滤膜三级连续在线洗滤工艺分离乳清蛋白和酪蛋白。实验使用0.08、0.11、0.14 MPa 3个梯度,在50℃,3.5倍浓缩的条件下连续生产240 min。计算跨膜压力并且检测截留液和透过液中的α-乳白蛋白(α-La),β-乳球蛋白(β-LG)含量及钾、钙、钠、镁等金属离子的含量。结果表明一级膜通量下降是导致整体膜通量下降的主要因素,经过240 min实验通量下降约17.2%。研究了不同跨膜压力下的膜通量变化情况,膜通量与跨膜压力呈正相关关系,水洗恢复率与跨膜压力呈负相关关系。随着实验时间的延长,膜表面形成不可逆的污堵层,乳清蛋白分离率下降,透过液中乳清蛋白含量下降,150 min后α-乳白蛋白浓度下降37%,β-乳球蛋白浓度下降36.5%。乳清蛋白中2种主要蛋白质比例会随着跨膜压力变化而变化,随着跨膜压力的升高β-乳球蛋白含量会逐渐升高。三级连续膜过滤后,乳清蛋白最高分离率90%左右(α-乳白蛋白为90.4%,β-乳球蛋白为92.7%)。乳中蛋白质的形态和功能受金属离子影响...  相似文献   

4.
采用孔径为100nm无机陶瓷膜超滤葡萄籽蛋白提取液,浓缩葡萄籽蛋白质,通过对膜过滤压力、pH、料液比三个因素分析以及正交优化实验,得到最佳工艺条件:操作压力0.1MPa,pH8,料液比为1∶120,此条件下蛋白回收率、浓缩效率、膜污染率、膜通量分别为89.45%、331.07L/m2·h、7.26%、350L/m2·h;采用不同的化学试剂清洗陶瓷膜,结果表明:用0.75% HNO3清洗效果较好,膜通量的恢复率可以达到46.34%.  相似文献   

5.
以预处理后万古霉素发酵液为料液,连续洗滤(CFD)过滤的效果更佳,表现在较高通量和收率。考察了陶瓷膜过滤万古霉素发酵液的分离效果,结果表明,通量与黏度成负相关性,50 nm陶瓷膜较优,且设定操作压力290 kPa,膜面流速5 m/s,温度20~30 ℃,浓缩1.66倍,连续洗滤2.5 BV,CFD过滤的平均通量可达78.9 kg/(h·m2),收率可达99.1%,与数学模型的理论值相近。采用质量分数为2%~3% NaOH与0.5%~1.0% NaClO混合清洗的方法,清洗后陶瓷膜的水通量重复恢复率可达98%以上,再生性较好。  相似文献   

6.
探讨了陶瓷膜用于卤制加工废弃液微滤的工艺条件。研究不同预处理方法、膜孔径、操作温度、操作压力等因素对膜通量的影响,并通过正交实验确定微滤的最佳工艺参数为:预处理网筛300目、陶瓷膜孔径0.22μm、操作温度50℃、操作压力0.075 MPa,通过质量分数0.75%NaOH和0.5%柠檬酸复合清洗后,陶瓷膜的通量恢复率可达到94.1%。  相似文献   

7.
陶瓷膜在甘油发酵液除菌中的应用   总被引:1,自引:0,他引:1  
将陶瓷膜应用于甘油发酵液的除菌操作中,考察了操作参数和清洗方法对膜通量的影响。结果表明,在压差0.1MPa、温度30℃、pH值7.0和错流速度3.5m/s条件下操作,有利于提高膜通量;发酵液过滤后,先以质量浓度为1%的NaOH和质量浓度为0.2%的NaClO混合液清洗膜40min,再以质量浓度为0.5%的HNO3溶液清洗5min,膜通量可迅速恢复。因此,陶瓷膜在甘油发酵液的除菌中是高效可行的。  相似文献   

8.
采用酪氨酸酶催化乳清蛋白聚合,酪氨酸酶催化蛋白的条件为pH 7.0,温度50℃,时间为3 h,酶活添加量为1 000 U/g蛋白时,相对于没有通过酶处理的样品,蛋白的膜回收效率和膜通量明显提高。膜通量与对照组相比提高20%。蛋白回收率与对照组相比提高27%左右。乳糖的截留率降低8%左右。此时,膜总阻力R_t和膜孔阻力R_p与对照组相比分别降低16%和33%。膜污染模型分析结果显示,酪氨酸酶催化蛋白膜过滤符合标准堵塞模型和饼层过滤模型。  相似文献   

9.
该文研究了小孔径陶瓷膜澄清甜叶菊提取液的效果。通过比较4、5、8、10 nm孔径的陶瓷膜过滤甜叶菊的甜菊糖提取液时的过滤通量、脱色率和收率的区别,确定较优的陶瓷膜孔径;再优化陶瓷膜操作参数。结果表明,5 nm陶瓷膜较优,在40 ℃时,操作压力5 bar,膜面流速4 m/s,浓缩10倍,加30%原液体积水洗滤效果最佳,陶瓷膜平均过滤通量可达102.6 kg/(m2·h),甜菊糖收率可达99.2%,陶瓷膜过滤结束后先利用质量分数1%~2%的NaOH清洗1 h,再用0.5%~1%硝酸清洗1 h,陶瓷膜水通量恢复率可以达到99%以上,再生效果比较好,可以重复使用。相比絮凝工艺,陶瓷膜脱色率提高了2.6%,甜菊糖收率提高了6.8%,因此膜法工艺可取代传统絮凝工艺实现对甜叶菊提取液的澄清。  相似文献   

10.
陶瓷膜过滤蔗汁后,膜孔易被堵塞,造成膜通量大幅降低,影响膜的使用效率,需制定合理的清洗方法,有效恢复膜通量,延长膜的使用寿命。本实验对碱性清洗剂、含酶清洗剂、混合氧化剂和混合氧化剂浸泡一段时间后再清洗的4种清洗方法的清洗效果进行了对比,结果显示混合氧化剂浸泡后再清洗的方法较适合过滤蔗汁后陶瓷膜管的清洗,膜通量恢复率可达87%以上,清洗效率较高,达到有效恢复被污染陶瓷膜的水通量的目的。  相似文献   

11.
Microfiltration (MF) is a membrane process that can separate casein micelles from milk serum proteins (SP), mainly beta-lactoglobulin and alpha-lactalbumin. Our objective was to develop a multistage MF process to remove a high percentage of SP from skim milk while producing a low concentration factor retentate from microfiltration (RMF) with concentrations of soluble minerals, nonprotein nitrogen (NPN), and lactose similar to the original skim milk. The RMF could be blended with cream to standardize milk for traditional Cheddar cheese making. Permeate from ultrafiltration (PUF) obtained from the ultrafiltration (UF) of permeate from MF (PMF) of skim milk was successfully used as a diafiltrant to remove SP from skim milk before cheese making, while maintaining the concentration of lactose, NPN, and nonmicellar calcium. About 95% of the SP originally in skim milk was removed by combining one 3 x MF stage and two 3 x PUF diafiltration stages. The final 3 x RMF can be diluted with PUF to the desired concentration of casein for traditional cheese making. The PMF from the skim milk was concentrated in a UF system to yield an SP concentrate with protein content similar to a whey protein concentrate, but without residuals from cheese making (i.e., rennet, culture, color, and lactic acid) that can produce undesirable functional and sensory characteristics in whey products. Additional processing steps to this 3-stage MF process for SP removal are discussed to produce an MF skim retentate for a continuous cottage cheese manufacturing process.  相似文献   

12.
This study reports on selenium distribution in goat milk. Skim milk was found to contain the major part (94%) of total milk selenium. The selenium distribution over casein and whey protein fractions depends on the separation method used, but irrespective of these methods, skim milk selenium is mainly associated with the casein fraction (greater than 69%). Approximately 9%, 7% and 24% of selenium is removed by dialysis (molecular cutoff 10-12 kDa) from skim milk, casein and whey respectively, indicating a major association of selenium with milk proteins. This observation is confirmed by selenium analysis of individual caseins and whey proteins isolated through ion-exchange chromatography and gel filtration. Selenium concentrations of the different isolated milk proteins show considerable variation (caseins: 294-550 ng Se/g; whey proteins: 217-457 ng Se/g).  相似文献   

13.
ABSTRACT: Pilot‐scale microfiltration (MF), microfiltration‐diafiltration (MDF), ultrafiltration (UF), ultrafiltration‐diafiltration (UDF), and nanofilration (NF) membrane fractionation processes were designed and evaluated for removing 90% to 95% of the lactose and sodium from skim milk. The study was designed to evaluate several membrane fractionation schemes as a function of: (1) membrane types with and without diafiltration; (2) fractionation process temperatures ranging from 17 to 45 °C; (3) sources of commercial drinking water used as diafiltrant; and (4) final mass concentration ratios (MCR) ranging from about 2 to 5. MF and MDF membranes provided highest flux values, but were unsatisfactory because they failed to retain all of the whey proteins. UDF fractionation processes removed more than 90% to 95% of the lactose and sodium from skim milk. NF permeate prepared from UDF cumulative permeate contained sodium and other mineral concentrations that would make them unsuitable for use as a diafiltrant for UDF applications. A method was devised for preparing simulated milk permeate (SMP) formulated with calcium, magnesium, and potassium hydroxides, and phosphoric and citric acids for use as UDF diafiltrant or for preparing lactose and sodium reduced skim milk (L‐RSM). MF retentates with MCR values of 4.7 to 5.0 exhibited extremely poor frozen storage stabilities of less than 1 wk at ?20 °C, whereas MCR 1.77 to 2.95 MDF and UDF retentates and skim milk control exhibited frozen storage stabilities of more than 16 wk. L‐RSM exhibited a whiter appearance and a lower viscosity than skim milk, lacked natural milk flavor, and exhibited a metallic off‐flavor.  相似文献   

14.
Response surface methodology was used to study the production of acid casein from skim milk powder and to investigate the effects of pH, concentration and washing conditions (agitation, time, temperature and wash water ratio) on the end product. The washed curd was analysed for residual ash, minerals and lactose. The critical variables were found to be concentration and pH in relation to mineral content; and concentration and washing time for lactose. Surface response methodology provides a unique insight into the relationships between the variables related to the process and the results are used to explain the observations in terms of milk chemistry. The washing process was further evaluated in terms of the Murphree Stage Efficiency to elucidate the effect of the number of washing stages on residual whey components in the casein curd. This study contributes to understanding the extrusion process of skim milk powder which makes use of higher milk solids concentrations.  相似文献   

15.
《Journal of dairy science》2022,105(6):4903-4914
Goat milk whey protein concentrates were manufactured by microfiltration (MF) and ultrafiltration (UF). When MF retentate blended with cream, which could be used as a starting material in yogurt making. The objective of this study was to prepare goat milk whey protein concentrates by membrane separation technology and to investigate the effects of polymerized goat milk whey protein (PGWP) on the physicochemical properties and microstructure of recombined goat milk yogurt. A 3-stage MF study was conducted to separate whey protein from casein in skim milk with 0.1-µm ceramic membrane. The MF permeate was ultrafiltered using a 10 kDa cut-off membrane to 10-fold, followed by 3 step diafiltration. The ultrafiltration-diafiltration-treated whey was electrodialyzed to remove 85% of salt, and to obtain goat milk whey protein concentrates with 80.99% protein content (wt/wt, dry basis). Recombined goat milk yogurt was prepared by mixing cream and MF retentate, and PGWP was used as main thickening agent. Compared with the recombined goat milk yogurt without PGWP, the yogurt with 0.50% PGWP had desirable viscosity and low level of syneresis. There was no significant difference in chemical composition and pH between the recombined goat milk yogurt with PGWP and control (without PGWP). Viscosity of all the yogurt samples decreased during the study. There was a slight but not significant decrease in pH during storage. Bifidobacterium and Lactobacillus acidophilus in yogurt samples remained above 106 cfu/g during 8-wk storage. Scanning electron microscopy of the recombined goat milk yogurt with PGWP displayed a compact protein network. Results indicated that PGWP prepared directly from raw milk may be a novel protein-based thickening agent for authentic goat milk yogurt making.  相似文献   

16.
The objective of this work was to study the effect of different salts and salt concentration on the isolation of casein micelles from bovine raw skim milk by tangential flow microfiltration. Tangential flow microfiltration (0.22 μm) was conducted in a continuous process adding a modified buffer to maintain a constant initial sample volume. This buffer contained calcium chloride (CaCl2), sodium phosphate (Na2HPO4), or potassium citrate (K3C6H5O7) in concentrations ranging from 0 to 100 mM. The concentrations of caseins and whey proteins retained were determined by sodium dodecyl sulfate-PAGE and analyzed using the Scion Image software (Scion Corporation, Frederick, MD). A complete isolation of caseins from whey proteins was achieved using sodium phosphate in the range of 10 to 50 mM and 20 times the initial volume of buffer added. No whey proteins were detected at 50 mM but this was at the expense of low caseins being retained. When lower sodium phosphate concentrations were used, the amount of caseins retained was higher but a small amount of whey proteins were still detected by sodium dodecyl sulfate-PAGE. Among the salts tested, calcium chloride at 50 mM and all volumes of buffer showed the higher retention of casein proteins. The highest casein:whey protein ratio was found at 30 mM CaCl2, but no complete casein micelle isolation was achieved. Potassium citrate was the most ineffective salt because a rapid loss of caseins and whey proteins was observed at all concentrations and with low quantities of buffer added during the filtration process. Our results show the potential of altering the mineral balance in milk for isolation of casein micelles from whey proteins in a continuous tangential flow microfiltration system.  相似文献   

17.
Pasteurized skim milk was subjected to membrane filtration using a molecular weight cut-off of 80 kDa and a plate and frame pilot scale system at temperatures below 10 °C. Via this process, transmission of whey proteins and ??-casein through the membrane was achieved. The milk was concentrated to two times (based on volume reduction), and whey protein-free permeate was added to return to the original volume fraction of casein micelles in milk. This diafiltration process was carried out four times, and the retentate obtained was nearly free of whey proteins and with approximately 20% of ??-casein removed. The same membrane filtration was also carried out at 25 °C to achieve transmission of whey protein but not of ??-casein, and to obtain whey protein-depleted milk without depletion of ??-casein.The gelling behaviour of these samples, reconstituted to the original casein volume fraction, was examined using rheology and diffusing wave spectroscopy. When compared to the original skim milk it was found that there were no statistically significant differences in gelation behaviour during acidification, but differences were noted in gelation time and final stiffness modulus for samples undergoing renneting. These differences were attributed mostly to the changes in ionic composition, as when the serum composition of the retentates was re-equilibrated against the original skim milk by dialysis; the gelation behaviour of the samples was comparable to that of skim milk. The results clearly indicate the importance of the milk's overall ionic balance in the early stages of aggregation of rennet-induced gelation of milk.  相似文献   

18.
The protein composition of bovine skim milk was modified using pilot scale membrane filtration to produce a whey protein-dominant ingredient with a casein profile closer to human milk. Bovine skim milk was processed at low (8.9 °C) or high (50 °C) temperature using ceramic microfiltration (MF) membranes (0.1 μm mean pore diameter). The resulting permeate stream was concentrated using polyethersulfone ultrafiltration (UF) membranes (10 kDa cut-off). The protein profile of MF and UF retentate streams were determined using reversed phase-high performance liquid chromatography and polyacrylamide gel electrophoresis. Permeate from the cold MF process (8.9 °C) had a casein:whey protein ratio of ∼35:65 with no αS- or κ-casein present, compared with a casein:whey protein ratio of ∼10:90 at 50 °C. This study has demonstrated the application of cold membrane filtration (8.9 °C) at pilot scale to produce a dairy ingredient with a protein profile closer to that of human milk.  相似文献   

19.
A mass balance optimization model was developed to determine the value of the κ-casein genotype and milk composition in Cheddar cheese and whey production. Inputs were milk, nonfat dry milk, cream, condensed skim milk, and starter and salt. The products produced were Cheddar cheese, fat-reduced whey, cream, whey cream, casein fines, demineralized whey, 34% dried whey protein, 80% dried whey protein, lactose powder, and cow feed. The costs and prices used were based on market data from March 2004 and affected the results. Inputs were separated into components consisting of whey protein, ash, casein, fat, water, and lactose and were then distributed to products through specific constraints and retention equations. A unique 2-step optimization procedure was developed to ensure that the final composition of fat-reduced whey was correct. The model was evaluated for milk compositions ranging from 1.62 to 3.59% casein, 0.41 to 1.14% whey protein, 1.89 to 5.97% fat, and 4.06 to 5.64% lactose. The κ casein genotype was represented by different retentions of milk components in Cheddar cheese and ranged from 0.715 to 0.7411 kg of casein in cheese/kg of casein in milk and from 0.7795 to 0.9210 kg of fat in cheese/kg of fat in milk. Milk composition had a greater effect on Cheddar cheese production and profit than did genotype. Cheese production was significantly different and ranged from 9,846 kg with a high-casein milk composition to 6,834 kg with a high-fat milk composition per 100,000 kg of milk. Profit (per 100,000 kg of milk) was significantly different, ranging from $70,586 for a high-fat milk composition to $16,490 for a low-fat milk composition. However, cheese production was not significantly different, and profit was significant only for the lowest profit ($40,602) with the κ-casein genotype. Results from this model analysis showed that the optimization model is useful for determining costs and prices for cheese plant inputs and products, and that it can be used to evaluate the economic value of milk components to optimize cheese plant profits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号