首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了建立RP-HPLC方法快速准确测定不同热处理方式的市售液态牛乳中主要活性蛋白包括α-乳白蛋白(α-La)和β-乳球蛋白(β-Lg)的质量浓度,建立了测定活性乳蛋白所使用的RP-HPLC法,该法具有良好的稳定性(RSD<8%)和较高的回收率(>95%)。测定结果表明,与原料乳相比,经过高温处理(常温存放)的液态乳中的活性α-La和β-Lg显著偏低(<0.16 g/L);而经巴氏杀菌后低温存放(2~6℃)的液态乳样品中活性乳蛋白可得到很好地保持,部分灭菌后低温存放的样品中活性蛋白损失较大。本研究旨为优化液态乳热处理工艺和规范乳企业对于液态乳的工业生产提供借鉴,为消费者对液态乳制品的选择提供指导。  相似文献   

2.
帕米尔牦牛分布在新疆克孜勒苏柯尔克孜自治州和喀什地区境内的帕米尔高原,帕米尔牦牛乳蛋白含量高,营养丰富,是当地牧民重要的食物来源。该研究利用等电点沉淀法对新疆帕米尔牦牛乳中大分子蛋白进行分离,得到乳清蛋白和酪蛋白,对其含量进行测定,并采用硫酸铵分级沉淀和离子交换层析等方法对α-乳白蛋白(α-lactalbumin,α-La)进行纯化。结果表明,帕米尔牦牛乳中总蛋白含量为(2.81±0.23) g/100mL,其中乳清蛋白和酪蛋白质量比为43∶57;帕米尔牦牛乳蛋白质包含α-La、β-乳球蛋白(β-lactoglobulin,β-Lg)、酪蛋白、血清白蛋白、乳铁蛋白和免疫球蛋白G等多种活性蛋白;另外,用饱和度为80%的硫酸铵可将α-La和β-Lg有效分离;再用DEAE-Sepharose离子交换层析进一步纯化,可除去β-Lg,得到高纯度的α-La。该研究可为新疆帕米尔牦牛产业发展及牦牛乳产品开发提供理论基础。  相似文献   

3.
脱脂乳粉生产过程的预杀菌工艺对乳清蛋白变性有很大影响,乳清蛋白的变性程度主要取决于温度和时间的变化。本文对脱脂乳体系和乳清体系进行55~95℃,1~30 min加热处理,通过反相高效液相色谱(RP-HPLC)检测加热后样品中乳清蛋白主要组分并进行比较分析。结果表明:在脱脂乳体系与乳清体系中,牛血清白蛋白(BSA)变性趋势基本相同,温度达到65℃时变性显著,85~95℃几乎全部变性。α-乳白蛋白(α-La)的变性率在温度低于75℃时变性率差异较小,而在75~95℃的加热范围内变性率区别明显。β-乳球蛋白(β-Lg)在75~85℃加热范围内变性率有明显差异,3种乳清蛋白组分的热变性程度均显示出受热时间和温度的累积效应,最终趋向全部变性。与脱脂乳中蛋白热变性比较表明,酪蛋白对乳清蛋白中牛血清白蛋白的变性影响不大,而在65~95℃间对α-乳白蛋白、β-乳球蛋白的热变性有一定的促进作用。  相似文献   

4.
目前市场上常见牛奶的杀菌方式有超高温瞬间灭菌(UHT)、巴氏杀菌等,这些牛奶的生产工艺不同,热处理强度不同,活性蛋白的变性率也各不相同。本实验通过比较不同方式热处理对牛奶中α-乳白蛋白、β-乳球蛋白和乳铁蛋白含量的影响,得出蒸汽浸入式直接杀菌(INF)对α-乳白蛋白、β-乳球蛋白和乳铁蛋白的热损伤程度低于UHT灭菌,与巴氏杀菌相当(P0.5),冷藏条件下,产品的保质期可达21 d,货架期高于巴氏杀菌牛奶。合适、恰当的热处理工艺,不仅可以杀死致病性微生物,同时又能最大限度地保留牛奶中的天然活性蛋白营养,保证牛奶的品质。  相似文献   

5.
研究选用了几种商业蛋白酶对乳清蛋白浓缩物(WPC)进行酶解,通过比较各酶解产物中α-乳白蛋白(α-La)和β-乳球蛋白(β-Lg)存余率的高低,筛选出Protease A具有优先降解β-Lg的能力;通过单因素实验设计和正交实验设计优化了Protease A优先降解β-Lg的工艺。最佳工艺为温度40℃,pH值为7.3,E/S为800U/g蛋白,酶解时间为3h,此时水解物的水解率(DH)为8.40%,α-La和β-Lg的存余率分别为5.3%和1.4%,水解产物的溶解性得到了明显地改善(P〈0.05)。  相似文献   

6.
采用毛细管电泳方法对乳及乳制品中乳源蛋白成分进行检测.选择聚乙烯醇涂层毛细管,采用柠檬酸缓冲体系,在紫外检测214 nm、分离电压20 kV条件下对乳及乳制品中的α-乳白蛋白(α-La)、β-乳球蛋白(β3-Lg)、α-酪蛋白(α-CN)、β-酪蛋白(β-N)和k-酪蛋白(k-N)进行分离测定.五种蛋白线性良好,线性相关系数均大于0.997 8,各蛋白峰面积的相对标准偏差为1.76%~3.28%,加标回收率范围为88.1%~110.8%.应用该方法对液态奶、酸奶及奶粉中的乳源蛋白进行测定.本法准确、简便、易行,适于测定液态奶、酸奶、奶粉中蛋白质的检测.  相似文献   

7.
以牛乳乳清蛋白为研究对象,探究不同热加工工艺(72 ℃/15 s、75 ℃/15 s、80 ℃/15 s、85 ℃/15 s)对巴氏杀菌乳乳清蛋白中3 种活性蛋白(α-乳白蛋白、β-乳球蛋白和乳铁蛋白)的影响,以及测定并分析杀菌温度对各样品菌落总数和嗜冷菌的影响。结果表明:随着热加工强度的提升,牛乳中的菌落总数随之减少,当杀菌温度在80 ℃以上时牛乳中的菌落总数小于10 CFU/mL;当杀菌温度在72 ℃以上时样品中的嗜冷菌数均小于10 CFU/mL;72 ℃/15 s 和75 ℃/15 s对α-乳白蛋白、β-乳球蛋白和乳铁蛋白影响较小,当杀菌温度达到80 ℃以上时,巴氏杀菌乳中的α-乳白蛋白、β-乳球蛋白和乳铁蛋白含量显著下降(P<0.05)。综上,热加工的时间和温度与乳清蛋白的关系密切,72~75 ℃/15 s 的热加工工艺能更好地保留乳清蛋白中的3 种活性蛋白。  相似文献   

8.
毛细管电泳法对乳及乳制品中乳源蛋白的研究   总被引:2,自引:0,他引:2  
采用毛细管电泳方法对原料乳、市售鲜奶、不同厂家的巴氏灭菌乳、不同厂家和产地超高温灭菌乳(UHT)、调味乳、乳酸饮料、复原乳、酸奶、奶粉中蛋白成分进行检测。选择聚乙烯醇涂层毛细管,采用柠檬酸缓冲体系,在紫外检测214nm、分离电压20kV条件下对乳及乳制品中的α一乳白蛋白(α-La)、β一乳球蛋白(β-Lg)、α-酪蛋白(α-CN)、β-酪蛋白(β-CN)和k-酪蛋白(k-CN)进行分离测定。结果表明:五种蛋白的含量在原料乳(巴氏灭菌乳、市售鲜奶)、UHT乳、酸奶、调味乳、乳酸饮料、复原乳中依次降低,而UHT乳含量随保质期的增加而减少,奶粉中蛋白质含量因其适应人群而有差异。乳及乳制品中蛋白质的含量与其存在形式、产地及加工工艺相关。  相似文献   

9.
热处理是保证乳制品质量稳定和卫生安全的重要手段之一,牛乳在热处理过程中会发生美拉德反应、乳糖异构化和蛋白质变性等多种化学变化,且反应程度与热处理强度密切相关。文中以纯鲜生乳为材料,经巴氏、超巴氏和超高温瞬时杀菌(UHT)等热处理后,分析检测牛乳中主要热敏感成分的变化。结果表明:随着热处理强度的提高,牛乳中的糠氨酸含量呈指数关系增加,纤溶酶活则逐渐下降;热处理强度不同导致乳清蛋白各组分的变性程度也不同,其中β-LgB和BSA对热最敏感,β-LgA其次,α-La的耐热性最强;热处理温度越高,时间越长,牛乳中VB1和VB6的损失率也就越高。根据牛乳中热敏感成分含量或活性在热处理过程中的的变化规律,可以将糠氨酸、α-乳白蛋白和纤溶酶活等作为牛奶受热程度的指示物,从而更好的指导实际生产和维护消费者权益。  相似文献   

10.
目的:采用超滤法联合高效液相色谱研究青霉素与牛乳蛋白结合形成的复合物及其热稳定性。方法:模拟牛乳环境,在pH 6.6、37℃水浴条件下,将青霉素分别与脱脂乳、酪蛋白和乳清蛋白混合,水浴培育10、30、60、90、120 min,经超滤离心后使用高效液相色谱仪测定其结合率。通过结合率的变化得出结合达到平衡的时间。经巴氏杀菌和超高温灭菌处理后的脱脂乳与青霉素的结合率的测定方法同上。结果:青霉素与脱脂乳、α-酪蛋白、β-酪蛋白、κ-酪蛋白、牛血清白蛋白达到结合平衡分别需要10、30、30、30、60 min,结合率分别为28.80%、20.36%、16.13%、5.61%、10.07%。青霉素未与β-乳球蛋白、α-乳白蛋白结合。经过巴氏和超高温杀菌后青霉素与脱脂乳的结合率分别为28.83%和44.62%。结论:牛乳中,酪蛋白是与青霉素结合的主要成分,乳清蛋白中的牛血清白蛋白与青霉素也有结合。巴氏杀菌过程对青霉素与脱脂乳的结合没有影响,而超高温灭菌过程会使结合率升高。  相似文献   

11.
采用壳聚糖对浓缩乳清蛋白溶液进行处理以除去牛乳中主要过敏原β-乳球蛋白(β-Lg).在室温条件下,应用响应面分析法对反应条件进行优化,以β-乳球蛋白的减少量来评价反应的程度,得到的最适条件:pH值为6.69,壳聚糖添加量为2.04 g/L;此条件下可去除94.89%的β-乳球蛋白,剩余78.68%的α-乳白蛋白(α-La和35.41%的牛血清白蛋白(BSA).此外,对β-乳球蛋白和壳聚糖的回收进行研究,采用正交试验设计考察pH、醋酸钠溶液浓度和添加比例β-乳球蛋白回收率的影响.结果表明,最佳工艺条件为pH值为9.0,醋酸钠溶液浓度0.2 mol/L,添加比例1:15,此条件下可回收87.23%的β-乳球蛋白,纯度为84.1%.  相似文献   

12.
基于红外光谱分析热处理对牛乳蛋白质二级结构的影响   总被引:4,自引:0,他引:4  
运用傅里叶变换红外光谱技术对乳蛋白及其酰胺Ⅰ带进行解析,进一步用红外解谱法对其二级结构进行表征。以原料乳为对照,研究65℃/30 min(低温长时巴氏杀菌)、80℃/15 s(高温短时巴氏杀菌)、95℃/5 min(酸乳热处理)、137℃/5 s(超高温灭菌)等不同热处理条件对乳中蛋白质二级结构的影响。结果表明,热处理会导致乳蛋白间发生相互作用,乳蛋白原空间结构受到破坏,导致分子内氢键被破坏。不同热处理程度的乳蛋白酰胺Ⅰ带均向低波数方向发生了不同程度的红移,表明乳蛋白变性过程中疏水氨基酸残基暴露形成分子间氢键。同时热处理后乳蛋白各二级结构比例发生明显改变。α-螺旋含量显著降低(P0.05),无规卷曲含量显著升高(P0.05),β-转角及β-折叠含量在加热过程均呈先增加后减少变化趋势,表明热处理程度增强导致部分有序结构向无规卷曲结构转化,蛋白质热变性后会发生热聚集现象,且β-折叠、β-转角结构在热聚集体的形成过程中具有重要作用。  相似文献   

13.
蛋白质功能因子乳状液体系巴氏杀菌受热时易改变其流变性,从而影响其品质。本研究基于乳状液异型聚集效应,构建多重功能因子乳状液微聚集体,以期改善其耐热性。选用大豆多糖(SSPS)和乳铁蛋白(LF)为乳化剂,DHA和β-胡萝卜素为功能因子,分别制备了SSPS-DHA乳状液和LF-β-胡萝卜素乳状液,二者以不同比例异型聚集,形成不同的乳状液微聚集体。考察不同加热方式25~80℃程序加热30 min(加热过程)和80℃加热30 min(模拟巴氏杀菌)对乳状液的物理稳定性与流变特性的影响。结果表明:单一LF-β-胡萝卜素乳状液加热后完全变性成凝胶状固体;SSPS-DHA/LF-β-胡萝卜素乳状液微聚集体在加热条件下,流变学特性明显改善;90 wt%LF-β-胡萝卜素-10 wt%SSPS-DHA乳状液微聚集体的流动性、粘弹性均表现为流体特征。因此,通过SSPS-DHA乳状液的添加可以显著改善蛋白乳状液的热变性与热凝固特性,从而保障巴氏杀菌等热处理不改变功能因子乳状液的质构。  相似文献   

14.
不同品种原料乳理化特性分析   总被引:1,自引:0,他引:1  
主要分析荷斯坦牛、牦牛、娟珊牛、摩拉水牛、尼里-拉菲水牛、Ⅰ代杂交水牛、高代杂交水牛等7个品种的原料乳的常规营养成分,并对原料乳中蛋白质和氨基酸组成及牛乳缓冲能力进行测定。结果显示:摩拉水牛、尼里-拉菲水牛、Ⅰ代杂交水牛和高代杂交水牛的乳脂肪含量分别为6.86%、7.99%、8.34%、8.69%,蛋白质含量分别为5.75%、5.14%、5.78%、5.58%,干物质含量分别为17.07%、18.79%、19.73%、19.88%,显著高于其他3种牛乳;牦牛和娟珊牛乳中乳糖含量分别为5.09%、5.17%,显著高于其他5种牛乳。SDS-PAGE显示:水牛乳中除含有牛乳血清蛋白(BSA)、α-酪蛋白(α-CN)、β-酪蛋白(β-CN)、κ-酪蛋白(κ-CN)、β-乳球蛋白(β-Lg)和α-乳白蛋白(α-La)主要蛋白外,还含有一些未定性蛋白;且水牛乳具有最好的缓冲性能,其次是牦牛乳和娟珊牛乳,荷斯坦牛乳缓冲性能最差。  相似文献   

15.
探究了热处理对乳脂肪球及乳脂肪球膜产生的影响,以驼原乳为研究对象,对采集的驼原乳进行4种不同的热处理(低温长时巴氏杀菌(LTLT)65℃,30 min;高温短时巴氏杀菌(HTST)85℃,15 s;超高温巴氏杀菌(UP)125℃,4 s;超高温瞬时灭菌(UHT)135℃,4 s).测定原乳及热处理乳乳脂肪球的粒径和形态...  相似文献   

16.
为研究鱼胶原蛋白肽(CP)对α-乳白蛋白(α-La)和表没食子儿茶素没食子酸酯(EGCG)聚集行为的影响及其形成的三元复合物的热稳定性,采用浊度法、动态光散射、荧光光谱和圆二色谱四种光谱学手段。结果表明,α-La、EGCG和CP的添加顺序直接影响所形成的三元复合物的结构特性。在温度为25℃条件下,低浓度的CP促进α-La-EGCG复合物的聚集,聚集体粒径增大,粒径分布不均一,溶液浊度增加;而较高浓度的CP则抑制α-La和EGCG的聚集行为,聚集体粒径较小,粒径分布均一,溶液相对澄清。zeta电位(ζ-电位)结果表明,在澄清溶液中,溶液的ζ-电位接近于0,这可能与CP抑制α-La和EGCG聚集的机理有关。荧光结果表明,CP的加入使三元复合物中α-La的结构伸展,α-La分子中色氨酸的亲水性增强。圆二色谱分析表明,澄清溶液中,CP使三元复合物中α-La的α-螺旋结构增加,而β-折叠、β-转角和无规则卷曲结构减小。热处理能够进一步降低溶液的浊度,增加颗粒粒径,使三元复合物中的α-La结构更加伸展,但对溶液ζ-电位和α-La二级结构影响不大。  相似文献   

17.
目的探讨不同温度条件下,热加工对牛乳中主要过敏原潜在致敏性的影响。方法将α-乳白蛋白与β-乳球蛋白经不同的加热条件处理后,用间接ELISA检测上述2种过敏原蛋白IgG的结合能力的变化。结果热处理后的α-乳白蛋白的IgG结合能力呈上升趋势;但经60~75℃热处理的α-乳白蛋白均比未加工的抗原性低,经60℃热处理的α-乳白蛋白的IgG结合能力下降幅度最大,下降比例为40%;经80℃热处理的α-乳白蛋白IgG结合能力大于未处理的α-乳白蛋白。热处理对β-乳球蛋白的IgG结合能力的影响与α-乳白蛋白相反:在60~80℃热加工条件下,β-乳球蛋白的抗原性随着温度的升高,抗原性逐渐减小,且经80℃加热处理的β-乳球蛋白的IgG结合能力最低,但仍然大于未加工的β-乳球蛋白的IgG结合能力。结论热加工能改变α-乳白蛋白和β-乳球蛋白IgG结合能力,进而改变致敏性。  相似文献   

18.
以正常乳和高酮体牛乳为原料,测定其在65°C、75°C、85°C和95°C下加热10 min的变性和聚集程度、乳清蛋白氮指数、表面巯基以及表面疏水性等,研究其在不同热处理条件下的理化性质变化及聚集行为。生乳的电泳图谱表明高酮体乳乳的β-酪蛋白(β-CN)、κ-酪蛋白(κ-CN)、α-乳白蛋白(α-LA)比例高于正常牛乳。热稳定性结果表明,热处理导致乳蛋白变性,并发生一定程度的聚集。随着处理强度的增加,乳蛋白变性程度增加。在75~95°C处理下,两种乳均发生一定程度的变性。在85°C和95°C处理下,高酮体乳蛋白表现出更差的热稳定性。  相似文献   

19.
水牛乳蛋白质的组成   总被引:5,自引:0,他引:5  
分析了摩拉水牛(M)、尼里-拉菲水牛(N)、一代杂交水牛(F1)、二代杂交水牛(F2)和高代杂交水牛(Fh)5个品代水牛的乳蛋白主要组分的相对百分比含量.同时分析了总氨基酸组成及钙、磷含量。结果表明,水牛乳蛋白的主要组分有:α-乳清蛋白(α-LA)、β-乳球蛋白(β-LG)、免疫球蛋白轻链(IgG—L)和重链(IgG—H)、αs1-酪蛋白(αs1-CN)、αs2-酪蛋白(αs2-CN),β-酪蛋白(β-CN)、κ-酪蛋白(κ—CN)、血清白蛋白(SA)和乳铁蛋白(LF)等;CN在水牛乳蛋白中占优势,与荷斯坦牛乳相比,水牛乳中CN的质量分数稍低,而且各品代水牛乳中的CN有显著性差异(P〈0.05);乳清蛋白中β-LG含量最高;杂交水牛乳蛋白高于纯种摩拉水牛和尼里一拉菲水牛,差异显著(P〈0.05):各品代水牛乳的氨基酸比例比较接近;不同品代水牛乳中钙、磷含量没有显著性差异。  相似文献   

20.
建立测定乳清蛋白中α-乳白蛋白和β-乳球蛋白含量的高效液相色谱分析方法,采用Agilent的ZORBOX Eclipse XDB-C8色谱柱(150 mm×4.6 mm),流动相A为10%乙腈中含0.1%三氟乙酸,流动相B为90%乙腈中含0.1%三氟乙酸。采用梯度洗脱,流速为0.25 mL/min,二极管阵列检测器,检测波长214 nm,柱温40℃。外标法定量,α-La和β-Lg两种组分线性关系良好,相关系数分别为0.993 1和0.990 9,检测限为3μg/mL、8μg/mL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号