首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Controlling Spin Qubits in Quantum Dots   总被引:1,自引:0,他引:1  
We review progress on the spintronics proposal for quantum computing where the quantum bits (qubits) are implemented with electron spins. We calculate the exchange interaction of coupled quantum dots and present experiments, where the exchange coupling is measured via transport. Then, experiments on single spins on dots are described, where long spin relaxation times, on the order of a millisecond, are observed. We consider spin-orbit interaction as sources of spin decoherence and find theoretically that also long decoherence times are expected. Further, we describe the concept of spin filtering using quantum dots and show data of successful experiments. We also show an implementation of a read out scheme for spin qubits and define how qubits can be measured with high precision. Then, we propose new experiments, where the spin decoherence time and the Rabi oscillations of single electrons can be measured via charge transport through quantum dots. Finally, all these achievements have promising applications both in conventional and quantum information processing. PACS: 03.67.Lx, 03.67.Mn, 73.23.Hk, 85.35.Be  相似文献   

2.
We describe a chain of qubits with always on exchange interaction in the presence of a spatial inhomogeneity in the qubit level spacing. Similarly to the phenomenon of Anderson localization, this system has a localized eigenstate which can be used to store or trap quantum information. We discuss both the fidelity of storage and the leakage of information from this localized state and show that even a very small defect can be useful. Presented at the 38th Symposium on Mathematical Physics “Quantum Entanglement & Geometry”, Toruń, June 4–7, 2006.  相似文献   

3.
We study the effects of noise and decoherence for a double-potential well system, suitable for the fabrication of qubits and quantum logic elements. A random noise term is added to the hamiltonian, the resulting wavefunction found numerically and the density matrix obtained by averaging over noise signals. Analytic solutions using the two-state model are obtained and found to be generally in agreement with the numerical calculations. In particular, a simple formula for the decoherence rate in terms of the noise parameters in the two-state model is reviewed and verified for the full simulation with the multi-level system. The formalism is extended to describe multiple sources of noise or different “dephasing” axes at the same time. Furthermore, the old formula for the “Turing-Watched Pot” effect is generalized to the case where the environmental interactions do not conserve the “quality” in question. Various forms for the noise signal are investigated. An interesting result is the importance of the noise power at low frequency. If it vanishes there is, in leading order, no decoherence. This is verified in a numerical simulation where two apparently similar noise signals, but differing in the power at zero frequency, give strikingly different decoherence effects. A short discussion of situations dominated by low frequency noise is given.  相似文献   

4.
We propose a scheme to read out qubits defined in single nuclear spins—addressing one of the main obstacles on the way to a solid state NMR quantum computer. It is based on a “spin valve” between bulk nuclear spin systems that is highly sensitive to the state of the qubit spin. We suggest a concrete realization of that detector in a Si lattice and show that it can be operated over a broad range of experimental parameters. Transport of spin through the proposed spin valve is analogous to that of charge through an electronic nanostructure, but exhibits distinctive new features.   相似文献   

5.
With the purpose to reveal consistency between multiple quantum (MQ) coherences and entanglement, we investigate numerically the dynamics of these phenomena in one-dimensional linear chains and ring of nuclear spins 1/2 coupled by dipole–dipole interactions. As opposed to the calculation of the MQ coherence intensity based on the density matrix describing the spin system as a whole, we consider the “differentiated” intensity related only to the chosen spin pair based on the reduced density matrix. It is shown that the entanglement and the MQ coherence have similar dynamics only for nearest neighbors while we did not obtained any consistency for remote spins.  相似文献   

6.
Different from the previous works on generating entangled states, this work is focused on how to transfer the prepared entangled states onto memory qubits for protecting them against decoherence. We here consider a physical system consisting of n operation qubits and 2n memory qubits placed in a cavity or coupled to a resonator. A method is presented for transferring n-qubit Greenberger–Horne–Zeilinger (GHZ) entangled states from the operation qubits (i.e., information processing cells) onto the memory qubits (i.e., information memory elements with long decoherence time). The transferred GHZ states are encoded in a decoherence-free subspace against collective dephasing and thus can be immune from decoherence induced by a dephasing environment. In addition, the state transfer procedure has nothing to do with the number of qubits, the operation time does not increase with the number of qubits, and no measurement is needed for the state transfer. This proposal can be applied to a wide range of hybrid qubits such as natural atoms and artificial atoms (e.g., various solid-state qubits).  相似文献   

7.
We obtain the set of all detector configurations providing the maximal violation of the Bell inequality in the Clauser–Horne–Shimony–Holt form for a general (pure or mixed) state of two qubits. Next, we analyze optimal conditions for the Bell-inequality violations in the presence of local decoherence, which includes energy relaxation at the zero temperature and arbitrary pure dephasing. We reveal that in most cases the Bell inequality violation is maximal for the “even” two-qubit state. Combined effects of measurement errors and decoherence on the Bell inequality violation are also discussed.  相似文献   

8.
We study quantum teleportation between two different types of optical qubits using hybrid entanglement as a quantum channel under decoherence effects. One type of qubit employs the vacuum and single-photon states for the basis, called a single-rail single-photon qubit, and the other utilizes coherent states of opposite phases. We find that teleportation from a single-rail single-photon qubit to a coherent-state qubit is better than the opposite direction in terms of fidelity and success probability. We compare our results with those using a different type of hybrid entanglement between a polarized single-photon qubit and a coherent state.  相似文献   

9.
Based on the quantum Zeno dynamics, we present an approach for deterministic preparation of arbitrary four-qubit decoherence-free state of superconducting quantum interference devices with respective to collective amplitude damping in a decoherence-free way, namely, not only the form of the target state is free of decoherence, but also the whole process for preparation. The operation is fast and convenient since we only need to manipulate three weak laser pulses sequentially. Other decoherence effects such as cavity decay and the spontaneous emission of qubits are also taken into account in virtue of master equation, and the strictly numerical simulation signifies the final fidelity is high corresponding to the current experimental technology.  相似文献   

10.
In ensemble (or bulk) quantum computation, all computations are performed on an ensemble of computers rather than on a single computer. Measurements of qubits in an individual computer cannot be performed; instead, only expectation values (over the complete ensemble of computers) can be measured. As a result of this limitation on the model of computation, many algorithms cannot be processed directly on such computers, and must be modified, as the common strategy of delaying the measurements usually does not resolve this ensemble-measurement problem. Here we present several new strategies for resolving this problem. Based on these strategies we provide new versions of some of the most important quantum algorithms, versions that are suitable for implementing on ensemble quantum computers, e.g., on liquid NMR quantum computers. These algorithms are Shor’s factorization algorithm, Grover’s search algorithm (with several marked items), and an algorithm for quantum fault-tolerant computation. The first two algorithms are simply modified using a randomizing and a sorting strategies. For the last algorithm, we develop a classical-quantum hybrid strategy for removing measurements. We use it to present a novel quantum fault-tolerant scheme. More explicitly, we present schemes for fault-tolerant measurement-free implementation of Toffoli and sz1/4,\sigma_{z}^{1/4}, as these operations cannot be implemented “bitwise”, and their standard fault-tolerant implementations require measurement.  相似文献   

11.
No cloning distinguishes the quantum cryptography. Buzek and Hillery have developed a universal quantum cloning machine that allows providing two copies of an arbitrary qubit state with the same accuracy independently of the input-state. The fidelity has been used as a criterion to characterize the cloning. It was found that this parameter can achieve 0.85 for special subsets of quantum states, i.e, equatorial qubits. In the present paper, we investigate the effects of a magnetic field environment as a perturbation of the cloning process. The quantum copying machines studied consist of UQCM-BH and UQCM-PC. Results have been discussed using both the fidelity and the relative entropy. Much attention has been paid to the magnetic field-related decoherence of ancillary qubits before preparation. An attempt to explain the impact of this decoherence on the performance of copying machines will be presented.  相似文献   

12.
In this paper I explore the entanglement evolution of qubits that are part of a five qubit quantum error correction code subject to various decohering environments. Specifically, I look for possible parallels between the entanglement degradation and the fidelity of the logical qubit of quantum information stored in the physical qubits. In addition, I note the possible exhibition of entanglement sudden death (ESD) due to decoherence and question whether ESD is actually a roadblock to successful quantum computation.  相似文献   

13.
Although remarkable progress has been achieved recently, to construct an optical cavity where a nitrogen-vacancy (NV) colour centre in diamond is coupled to an optical field in the strong coupling regime is rather difficult. We propose an architecture for a scalable quantum interface capable of interconverting photonic and NV spin qubits, which can work well without the strong coupling requirement. The dynamics of the interface applies an adiabatic passage to sufficiently reduce the decoherence from an excited state of a NV colour centre in diamond. This quantum interface can accomplish many quantum network operations like state transfer and entanglement distribution between qubits at distant nodes. Exact numerical simulations show that high-fidelity quantum interface operations can be achieved under room-temperature and realistic experimental conditions.  相似文献   

14.
Recent experimental progress in controlling neutral group-II atoms for optical clocks, and in the production of degenerate gases with group-II atoms has given rise to novel opportunities to address challenges in quantum computing and quantum simulation. In these systems, it is possible to encode qubits in nuclear spin states, which are decoupled from the electronic state in the 1S0 ground state and the long-lived 3P0 metastable state on the clock transition. This leads to quantum computing scenarios where qubits are stored in long lived nuclear spin states, while electronic states can be accessed independently, for cooling of the atoms, as well as manipulation and readout of the qubits. The high nuclear spin in some fermionic isotopes also offers opportunities for the encoding of multiple qubits on a single atom, as well as providing an opportunity for studying many-body physics in systems with a high spin symmetry. Here we review recent experimental and theoretical progress in these areas, and summarise the advantages and challenges for quantum computing and quantum simulation with group-II atoms.  相似文献   

15.
We present a general theory of entanglement-assisted quantum convolutional coding. The codes have a convolutional or memory structure, they assume that the sender and receiver share noiseless entanglement prior to quantum communication, and they are not restricted to possess the Calderbank–Shor–Steane structure as in previous work. We provide two significant advances for quantum convolutional coding theory. We first show how to “expand” a given set of quantum convolutional generators. This expansion step acts as a preprocessor for a polynomial symplectic Gram–Schmidt orthogonalization procedure that simplifies the commutation relations of the expanded generators to be the same as those of entangled Bell states (ebits) and ancilla qubits. The above two steps produce a set of generators with equivalent error-correcting properties to those of the original generators. We then demonstrate how to perform online encoding and decoding for a stream of information qubits, halves of ebits, and ancilla qubits. The upshot of our theory is that the quantum code designer can engineer quantum convolutional codes with desirable error-correcting properties without having to worry about the commutation relations of these generators.  相似文献   

16.
We consider the classical algebra of observables that are diagonal in a given orthonormal basis, and define a complete decoherence process as a completely positive map that asymptotically converts any quantum observable into a diagonal one, while preserving the elements of the classical algebra. For quantum systems in dimension two and three any decoherence process can be undone by collecting classical information from the environment and using such an information to restore the initial system state. As a relevant example, we illustrate the quantum eraser of Scully et al. [Nature 351, 111 (1991)] as an example of environment-assisted correction, and present the generalization of the eraser setup for d-dimensional systems. Presented at the 38th Symposium on Mathematical Physics “Quantum Entanglement & Geometry”, Toruń, June 4–7, 2006.  相似文献   

17.
The utility of a five-qubit entangled state for quantum teleportation, quantum state sharing and superdense coding is investigated. The state can be utilized for perfect teleportation and quantum state sharing of an arbitrary single- and two-qubit state. The capacity of superdense coding of the state reaches the “Holevo bound”, which means that five classical bits can be transmitted by sending three qubits. The preparation of the five-qubit state and detection of the multipartite states in cavity QED are discussed. The distinct advantage of the feasible cavity QED technology that we use is insensitive to the thermal field and the cavity decay.  相似文献   

18.
本文主要回顾了石墨烯量子点的制备以及基于石墨烯量子点自旋和电荷量子比特操作的研究进展,由于石墨烯材料相对较轻的原子重量使其具有较小的自旋轨道相互作用,另外含有核自旋的碳同位素13C在自然界中的含量大约只占1%,这使得超精细相互作用(即核自旋和电子自旋相互作用)较弱,所以石墨烯比其他材料具有较长的自旋退相干时间,在量子计算和量子信息中有非常好的应用前景.本文计算了5种静电约束制备的石墨烯量子点:1)扶手型单层石墨烯纳米条带,2)单层石墨烯圆盘,3)双层石墨烯圆盘,4)ABC堆积型三层石墨烯圆盘,5)ABA堆积型三层石墨烯圆盘.石墨烯量子点中自旋比特应用的关键是破坏谷简并,在1)中,主要是利用边界条件破坏谷简并,而2)–5)中是利用外磁场破坏谷简并.文章进一步介绍了自旋轨道相互作用和超精细相互作用对石墨烯量子点中自旋操作的影响.  相似文献   

19.
We study the effect of decoherence on a qubit-qutrit system under the influence of global, local and multilocal decoherence in non-inertial frames. We show that the entanglement sudden death can be avoided in non-inertial frames in the presence of amplitude damping, depolarizing and phase damping channels at lower level of decoherence. However, degradation of entanglement is seen due to Unruh effect. It is seen that for lower values of decoherence, the depolarizing channel heavily degrades the entanglement as compared to the amplitude damping and phase damping channels. Entanglement sudden birth is also seen in case of depolarizing channel. However, for higher values of decoherence parameters, amplitude damping channel dominantly degrades the entanglement of the hybrid system. Entanglement sudden death is not seen for any value of acceleration of the accelerated observer “Rob” in case of phase damping channel. Further more, a symmetrical behaviour of negativity is seen for depolarizing channel.  相似文献   

20.
A theoretical spin-based scheme for performing a variety of quantum computations is presented. It makes use of an array of multiple identical “computer” vectors of phosphorus-doped silicon where the nuclei serve as logical qubits and the electrons as working qubits. The spins are addressed by a combination of electron spin resonance and nuclear magnetic resonance techniques operating at a field of $\sim $ 3.3 T and cryogenic temperatures with an ultra-sensitive surface microresonator. Spin initialization is invoked by a combination of strong pre-polarization fields and laser pulses, which shortens the electrons’ $T_{1}$ . The set of universal quantum gates for this system includes an arbitrary rotation of single qubits and c-NOT operation in two qubits. The efficient parallel readout of all the spins in the system is performed by high sensitivity induction detection of the electron spin resonance signals with one-dimensional imaging. Details of the suggested scheme are provided, which show that it is scalable to a few hundreds of qubits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号