首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
采用传统固相法制备得到(0.8-x) Bi0.5 Na0.5TiO3-0.2Bi0.K0.5TiO3-xBi(Zn2/3 Nb1/3)O3(摩尔分数0≤x≤0.06)(简称(0.8-x)BNT-0.2BKT-xBZN)无铅压电陶瓷.利用XRD、SEM等测试技术表征了该体系陶瓷的晶体结构、表面形貌及介电和压电性能.研究结果表明,所有组分的陶瓷样品均形成典型的钙钛矿结构;同一烧结温度下,随着Bi(Zn2/3 Nb1/3)O3含量的增加,晶粒尺寸增加;在1 180℃烧结温度保温2h的条件下,组成为x=0.02的陶瓷样品经极化后,压电常数d33=48 pC/N,相对介电常数ε33T/ε0=598.9,介电损耗tan δ=0.048 45.  相似文献   

2.
采用传统固相烧结法制备了CeO_2掺杂的0.97(K_(0.5)Na_(0.5))NbO_3-0.03Bi(Zn_(2/3)Nb_(1/3))O_3-1.0%CeO_2(0.97KNN-0.03BZN-1.0CeO_2,摩尔分数)无铅铁电陶瓷。研究了1 130℃烧结温度下,不同保温时间(1h、2h、4h)和升温速率(2℃/min、5℃/min)对陶瓷样品相组成、显微结构及介电和铁电性能的影响。研究发现,当烧结条件为1 130℃,保温4h,升温速率2℃/min时,0.97KNN-0.03BZN-1.0CeO_2陶瓷试样较致密,表现出较优异的介电、铁电性能,介电常数为1 418(100kHz),介电损耗低于2%,并表现出弛豫铁电体特性。  相似文献   

3.
PMN-PZN-PZT四元系压电陶瓷材料的研究   总被引:2,自引:0,他引:2  
采用传统的氧化物混合烧结工艺制备了Pb(Mn1/3Nb2/3)x(Zn1/3Nb2/3)y(ZrzTi1z)1xyO3四元系压电陶瓷材料。研究了成分及预烧温度对该四元系材料组织结构与性能的影响规律。研究结果表明:随着Pb(Mn1/3Nb2/3)O3含量的增多,陶瓷的相结构由四方相转变为三方相,准同型相界位于0.025 PMN~0.075 PMN之间,且Pb(Mn1/3Nb2/3)O3增加至7.5 %(摩尔分数),可以同时提高机电耦合系数kp和机械品质因数Qm,使kp达到0.575,Qm达到1 621;提高预烧温度可以改善陶瓷的烧结特性,同时可以改善陶瓷的介电、压电性能。  相似文献   

4.
采用传统固相反应法制备了掺杂CeO_2的0.97(K_(0.5)Na_(0.5))NbO_3-0.03Bi(Zn_(2/3)Nb_(1/3))O3-1.0%CeO_2(0.97KNN-0.03BZN-1.0CeO_2)无铅铁电陶瓷,研究了不同烧结温度(1 120℃、1 130℃、1 140℃)对陶瓷样品相组成、显微结构及介电、铁电性能的影响。研究结果表明,随烧结温度的升高,0.97KNN-0.03BZN-1.0CeO_2陶瓷的致密度得到提高;陶瓷样品为纯钙钛矿结构;1 130℃烧结的0.97KNN-0.03BZN-1.0CeO_2陶瓷样品表现出显著的弛豫特性,介电损耗低于3%;升高烧结温度能有效减小0.97KNN-0.03BZN-1.0CeO_2陶瓷的漏电流。  相似文献   

5.
采用传统陶瓷制备方法,制备出一种钙钛矿结构无铅新压电陶瓷材料(1-x)(Na1/2Bi1/2)TiO3-x(Na1/2Bi1/2)(Sb1/2Nb1/2)O3(x=0~1.4%,摩尔分数)。研究了(Na1/2Bi1/2)TiO3(NBT)陶瓷B位复合离子(Sb1/2Nb1/2)4 取代对介电和压电性能的影响。X-射线衍射分析表明,所研究的组成均能形成纯钙钛矿(ABO3)型固溶体。陶瓷材料的介电常数-温度曲线显示陶瓷在升温过程中存在两个介电常数温度峰,不同频率下陶瓷材料的介电常数-温度曲线显示该体系材料具有明显的弛豫铁电体特征。检测了不同组成陶瓷的压电性能,发现材料的压电常数d33、厚度机电耦合系数kt和介电常数rε随着x值的增加先增加后降低,在x=0.8%时,陶瓷的d33=97 pC/N,kt=0.50,为所研究组成中的最大值,介电损耗tanδ则随x值的增加而增加。  相似文献   

6.
采用固相反应法制备了(Bi2–xNax)(Zn1/3Nb2/3)O7陶瓷,研究了Na+替代Bi3+对Bi2(Zn1/3Nb2/3)2O7基陶瓷烧结性能、显微结构和介电性能的影响。替代后样品的烧结温度从960℃降至约880℃;当替代量x≤0.20时,相结构保持单一的单斜焦绿石相,随替代量进一步增加出现立方相;温度为–30~+130℃,替代后样品出现明显的介电弛豫现象,弛豫过程中的激活能约为0.40eV。用缺陷偶极子和晶格畸变对Na掺杂Bi2(Zn1/3Nb2/3)2O7基陶瓷的介电弛豫现象作出简要解释。  相似文献   

7.
Sr掺杂四元系压电陶瓷压电性能研究   总被引:1,自引:0,他引:1  
采用传统的固相烧结法制备了Pb(Sn1/3 Nb2/3)O3-Pb(Zn1/3 Nb2/3)O3-PbZrO3-PbTiO3(PSN-PZN-PZT)四元系压电陶瓷,并通过添加SrCO3提高材料的性能.采用X线衍射对合成后材料的晶相进行分析,用扫描电子显微镜观察了样品表面的显微结构,并讨论了组成压电性能及温度稳定性的影响.当烧结温度为1 260℃并保温2h,且x(Sr)=0.02~0.04时,PSN-PZN-PZT系统的综合性能最佳:压电常数d33 =288~291 pC/N,机电耦合系数kp=53.6%~59.1%,机械品质因数Qm=1 529~1 554,Tc =254~265℃.  相似文献   

8.
铌钽酸盐无铅压电陶瓷的制备与性能   总被引:4,自引:0,他引:4  
用常规氧化物固溶方法制备了无铅压电铌钽酸盐(Na0.50K0.35Li0.1Ag0.05)(Nb1-xTax)O3 (x = 0,0.025 0,0.050 0,0.072 5)材料,研究了该材料的介电、压电性能随x的变化关系。实验发现x = 0.050 0在1 102℃条件下烧结的陶瓷,其压电常数d33高达117 pC/N,机电耦合系数kt、kp和k33分别为34%、25%和41%,相对介电常数T33e/e0 为617,机械品质因数Qm为121。该压电陶瓷是一高温压电陶瓷,四方–立方相变温度高达600℃以上。  相似文献   

9.
以固态氧化物为原料,采用一次合成工艺制备PSN-PZT压电陶瓷,并研究PSN含量、B位离子Nb缺位量、ZrO2的减少量、微量添加元素、烧结工艺参数对陶瓷压电性能的影响。结果表明:PSN的加入使PZT的准同型相界点向富钛方向移动,当PSN的摩尔分数为3%,材料的最佳锆钛比r(Zr/Ti)=1.04。B位离子Nb的缺位可大幅度降低材料的烧结温度,在Nb缺位量为10%时,可使材料的烧结温度降低到(1 110±20)℃,同时保持优异的压电性能:居里温度TC=339℃,压电常数d33=427 pC/N,介电常数3εT3/0ε=1 750,机电耦合系数kp=0.72,介电损耗tanδ=0.014。  相似文献   

10.
BMN掺杂NBT压电陶瓷的介电特性研究   总被引:2,自引:2,他引:2  
采用传统陶瓷制备方法,制备了一种新无铅压电陶瓷材料(1-x)Na1/2Bi1/2TiO3-xBi(Mg2/3Nb1/3)O3.研究了Bi(Mg2/3Nb1/3)O3掺杂对(Na1/2Bi1/2)TiO3陶瓷晶体结构、弥散相变与介电弛豫行为的影响.X-射线衍射(XRD)分析表明,在所研究的组成范围内陶瓷材料均能形成纯钙钛矿固溶体.材料的介电常数-温度曲线显示陶瓷具有2个介电反常峰Tt和Tm,低掺杂的样品低频介电常数在居里温度以上异常增加.该体系陶瓷表现出与典型弛豫铁电体明显不同的弛豫行为.根据宏畴-微畴转变理论探讨了该体系陶瓷产生介电弛豫的机理.  相似文献   

11.
用固相反应法制备了一系列铌锑酸镁(Sb含量x≤2)陶瓷,研究了该陶瓷的烧结性能、物相结构和微波介电性能。结果表明,当x≤1.6时,铌锑酸镁形成了连续固溶体,少量Sb5+对Nb5+的取代(0.4≤x≤0.8),使得陶瓷最佳烧结温度从1400℃降到1300℃,而材料εr和Q·f值没有降低。1300℃,5h烧结的铌锑酸镁陶瓷具有优异的微波介电性能:εr为11.61,Q·f为169820GHz,τf为–54.4×10–6℃–1。  相似文献   

12.
预烧温度对PZN-PZT压电陶瓷电性能的影响   总被引:1,自引:1,他引:0  
采用传统固相法制备了化学计量比为0.3Pb(Zn1/3Nb2/3)O3-0.35PbTiO3-0.35PbZrO3的压电陶瓷,研究了所制陶瓷的预合成温度对其微观结构和压电介电性能的影响。结果显示,当预合成温度大于800℃时可以获得纯钙钛矿相,低于800℃钙钛矿主晶相不明显且有很多杂相产生。当预烧温度为775℃时,经1 125℃保温3 h烧结的陶瓷具有最佳综合性能:d33=431 pC/N、k31=0.36、Ec=9.98×103 V/mm、Pr=22.52×10–6 C/cm2、εr=1 874、tanδ=0.024、ρ=7.88 g/cm3。  相似文献   

13.
Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷的介电性能与微观结构   总被引:5,自引:2,他引:3  
利用传统陶瓷工艺制备了新型的Bi0.5(Na1-x-yKxLiy)0.5TiO3无铅压电陶瓷,研究了陶瓷的介电性能和微观结构。研究结果表明,介电常数εr和介质损耗tgδ在K含量为0.20~0.25(摩尔分数)时达到最大值,且随Li含量的增加而增大;介温曲线表明,Bi0.5(Na1-x-yKxLiy)0.5TiO3陶瓷在110~210℃之间出现介质损耗峰,在300~350℃附近出现比较平坦的介电常数峰;陶瓷的最佳烧结条件为1 100~1 150℃,2~3 h;陶瓷晶粒有规则的几何外形,晶粒尺寸为1.2~2.5 m;Li含量越高,陶瓷的烧结温度越低;K促进了晶粒特定方向的生长。  相似文献   

14.
采用传统固相反应法制备了Na-Ti掺杂Bi2(Zn1/3Nb2/3)2O7陶瓷。研究了Na+替代Bi3+,Ti4+替代Nb5+对Bi2(Zn1/3Nb2/3)2O7陶瓷烧结特性、显微结构和介电性能的影响。结果表明,掺入Na+和Ti4+后,Bi2(Zn1/3Nb2/3)2O7陶瓷的烧结温度从1000℃降到了860℃左右;在–30℃~+130℃的温度范围内,Na-Ti掺杂Bi2(Zn1/3Nb2/3)2O7陶瓷表现出明显的、激活能约为0.3eV的介电弛豫现象。这主要是由缺陷偶极子和晶格畸变在陶瓷中的出现引起的。  相似文献   

15.
采用固相反应法制备了CuO、CeO2共掺杂Ba0.85Ca0.15Zr0.1Ti0.9O3(BCZT)无铅压电陶瓷,研究了CuO的掺杂量对所制陶瓷晶体结构、压电及介电性能的影响。结果表明:CuO的加入,进一步降低了预先经0.05%(质量分数)CeO2掺杂的BCZT陶瓷的烧结温度;在1 250℃烧结时,仍可获得纯钙钛矿结构的BCZT陶瓷。当CuO掺杂量为质量分数0.2%时,所制BCZT陶瓷具有最佳的压电性能:d33=370 pC/N,tC约为93℃,tanδ=0.0147。  相似文献   

16.
分别以液相包覆法和固相混合法引入助烧剂CuO制备(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7(BZN)陶瓷。采用X线衍射、扫描电镜及电感-电容-电阻测试仪等对其烧结特性、相结构及介电性能进行了研究。液相包覆法可减少助烧剂的加入量从而降低其对陶瓷介电性能的恶化。CuSO4溶液的浓度为0.5mol/L,900℃烧结3h所制得(Bi1.5Zn0.5)(Zn0.5Nb1.5)O7陶瓷的介电常数εr=161,介电损耗tanδ=0.005,τf=-398×10-6/℃(1MHz)。  相似文献   

17.
(Zn_(1/3)Nb_(2/3))~(4+)取代的BNT系无铅压电陶瓷性能   总被引:1,自引:0,他引:1  
采用两步合成工艺,制备了新型Bi1/2Na1/2Ti1–x(Zn1/3Nb2/3)xO3(简称BNTZN—100x)系无铅压电陶瓷。研究了B位复合离子(Zn1/3Nb2/3)4+取代量对BNT陶瓷介电及压电性能的影响。结果表明:当0.005≤x≤0.020时,该体系陶瓷具有三方、四方共存的准同型相界(MPB)结构。在MPB附近,具有较佳的压电性能:当x为0.020时,d33为97pC/N,kt为0.47。εr-t曲线显示该体系材料具有明显的弥散相变特征。具有高kt值,低kp值;kt/kp较大,具有较大的各向异性,是一种适合高频下使用的优良超声换能材料。  相似文献   

18.
采用传统固相反应法制备了BiVO_4掺杂的Ba_3Ti_5Nb_(5.84)Ta_(0.16)O_(28)陶瓷,研究了所制陶瓷的烧结性能、介电性能以及结构。BiVO_4的添加使Ba_3Ti_5Nb_(5.84)Ta_(0.16)O_(28)陶瓷的烧结温度从1275℃显著降低到了900℃,介电常数及介电损耗略有提高。其中,掺杂有5.0%(质量分数)BiVO_4的Ba_3Ti_5Nb_(5.84)Ta_(0.16)O_(28)陶瓷在950℃保温烧结3h后具有较好的微波介电性能:ε_r=31.5,Q·f=4338GHz,τf=36.2×10~(–6)/℃。  相似文献   

19.
利用传统陶瓷工艺制备了Bi1/2(Na1-xLix)1/2TiO3(简写BNLT100x,其中x为摩尔含量)系无铅压电陶瓷,研究了该陶瓷的微结构、压电和介电性能。X-射线衍射分析(XRD)结果表明,在x=0~0.20时,Bi1/2(Na1-xLix)1/2TiO3陶瓷为单相三方晶系钙钛矿结构;在x=0.30时,会有影响压电性能的第二相产生。扫描电镜(SEM)结果表明,Li含量越高,陶瓷的烧结温度越低,Li促进了晶粒特定方向的生长;在x=0.15时,压电系数d33达极大值109 pC/N;同时研究了极化工艺条件对材料压电性能的影响。  相似文献   

20.
采用传统固相反应制备出了0.80Na0.5Bi0.5TiO3-0.20K0.5Bi0.5TiO3(NKBT)基无铅压电陶瓷材料,研究了高化合价离子(Sb5+, Nb5+,W6+) B位掺杂对NKBT基无铅压电陶瓷结构与性能的影响.结果表明,掺杂等量Sb3+、Nb5+和W6+后,NKBT基陶瓷的主晶相仍然为钙钛矿相结构,其中掺杂Sb5+和Nb5+时,陶瓷中分别出现少量Sb6O13和Nb2O5相.掺杂离子的相对原子质量越大,陶瓷的压电常数d33越大.W6+为最优掺杂离子.不同W6+含量的NKBT陶瓷的主晶相均为钙钛矿相,当W6+摩尔分数为8%时,出现焦绿石相Bi14W2O27.W6+的固然极限为4%.随着W6+摩尔分数的增加,材料的介电常数εr、d33及居里温度TC减小,介电损耗tan δ增加.当W6+的摩尔分数为1%时,陶瓷的性能达到最佳,其d33、εr、tan δ、TC分别为123 pC/N,1 352、0.042 9,318 ℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号