共查询到20条相似文献,搜索用时 125 毫秒
1.
在生产过程中,用镗铣床加工连杆零件整个工序繁琐,加工辅助时间长,生产效率低,生产成本高,不符合工厂的生产需要。针对此种情况,设计出一种车床辅助夹具,使工件和夹具的配合在保证加工精度的同时,加工效率得到极大的提高。 相似文献
2.
在生产过程中,尝试用数控车床加工以往在其它设备上生产的吊环工件,针对此种情况,设计出一种车床辅助夹具使工件和夹具的配合,既可保证加工精度,又大大提高了加工效率. 相似文献
3.
袁礼彬 《机械制造与自动化》2010,39(1):49-51
组合加工法在夹具制造工艺方面上明显有别于装配调整法,其基本原理是将夹具作为一个整体对待,对有位置精度要求的导向结构或定位结构,安排在夹具组装后进行加工,以最大限度地减少各元件之间的累积误差,提高夹具制造精度。现以典型实例为例,论述了组合加工法在夹具制造中的应用过程,并总结了应用这种工艺方法制造的夹具在图样设计的主要特点。大量的实际应用表明,组合加工法是保证夹具制造精度的最简便有效的工艺方法。 相似文献
4.
装配加工法在夹具制造工艺方面上明显有别于装配调整法,其基本原理是:将夹具作为一个整体对待,对有位置精度要求的导向结构或定位结构,安排在夹具组装后进行加工,以最大限度地减少各元件之间的累积误差,提高夹具制造精度。文章通过典型实例论述了装配加工法在夹具制造中的应用过程,并总结了应用这种工艺方法制造的夹具在图样设计方面的主要特点。大量的实际应用表明,装配加工法是保证夹具制造精度的最简便有效的工艺方法。 相似文献
5.
在夹具设计过程中,对于被加工零件的定位、夹紧等主要问题,设计人员一般都会考虑的比较周全,但是,夹具设计还经常会遇到一些小问题,这些小问题如果处理不好,也会给夹具的使用造成许多不便,甚至会影响到工件的加工精度。我们把多年来在夹具设计中遇到的一些小问题,归纳如下: 相似文献
6.
7.
装配加工法在保证夹具制造精度中的应用 总被引:1,自引:0,他引:1
装配加工法在夹具制造工艺方面上明显有别于装配调整法,其基本原理是,将夹具作为一个整体对待,对有位置精度要求的导向结构或定位结构,安排在夹具组装后进行加工,以最大限度地减少各元件之间的累积误差,提高夹具制造精度。以典型实例为例,论述了装配加工法在夹具制造中的应用过程,并总结了应用这种工艺方法制造的夹具在图样设计的主要特点。大量的实际应用表明,装配加工法是保证夹具制造精度的最简便有效的工艺方法。 相似文献
8.
在车床加工中,当利用车床靠模加工某带有凹球面的工件时,由于该工件的表面粗糙度要求较高,对型面的形状精度要求更高,传统的车床靠模加工中与凹球面相接触的是聚氟乙烯膜片,如果凹球面精度达不到要求,将严重影响膜片的使用寿命和产品的计量精度. 相似文献
9.
用镗铣床加工弯头件时,生产效率低,生产成本高,不能满足工厂的生产需要。文中设计出一种车床辅助夹具,使工件在夹具的配合下,在保证加工精度的同时,极大地提高了加工效率。 相似文献
10.
目前困扰有关生产厂家的一个突出问题是有相当数量的机械零件的制造精度达不到设计要求。对成批生产而言,机械零件的制造精度在很大程度上取决于加工该零件的机床夹具能否达到夹具设计精度要求。 从目前状况来看,夹具设计精度保障方法依然是采用装配调整法,而企业的夹具设计资料是装配图加零件图。这就决定了夹具制造只能象一般机械制造那样,先按零件图制造出所有零件,然后组装,再设法通过调整来满足装配图提出的各种尺寸及形位公差要求。据笔者多年的实践,对于绝大多数夹具来讲,这种装配调整法很难保证夹具装配精度的要求。为此,笔者改用装配加工法来实现夹具的高精度要求。 装配加工法过去已有应用,例如减速箱的齿轮轴承孔的镗削。笔者只是将这种方法在夹具制造中加以 相似文献
11.
Y. Zheng Y. Rong Z. Hou 《The International Journal of Advanced Manufacturing Technology》2008,36(9-10):865-876
This paper presents a systematic finite element model to predict the fixture unit stiffness by introducing nonlinear contact elements on the contact surface between fixture components. The contact element includes three independent springs: two in tangential directions and one in the normal direction of the contact surface. Strong nonlinearity is caused by possible separation and sliding between two fixture components. The problem is formulated by the penalty function method and is solved by the modified Newton--Raphson procedure. The model was validated by two cases of analysis of a linear cantilever beam and a simple fixture unit with two components. Results are in agreement with the corresponding analytical solution of beams and the previous experiment results for fixture in the literature. 相似文献
12.
13.
14.
运用有限元法对机械结构进行模态分析可以求出结构的固有振动特性,获得避免共振现象产生的工作频率范围,同时提出改善结构模态特性的方法。文章运用有限元分析软件ANSYS分析了某机床床身的前8阶固有频率和振型,提出了适合加工的主轴转速范围和改善床身结构模态特性的方法。研究实例表明:有限元法具有简单、快速、直观的特点,是一种对机械结构进行模态分析的有效方法。 相似文献
15.
有限元和断裂力学在结构故障诊断中的应用 总被引:2,自引:1,他引:1
冶金起重机由于其工作环境恶劣,工作级别高,起重量大以及结构相对复杂,使其金属结构很容易出现故障,其中最常见、最危险的是出现疲劳裂纹。某大型钢厂发现3台不同厂家制造的140t和125t铸造起重机主梁副腹板的舱门拐角处的焊缝及腹板母材开裂,母材裂纹最长者达150mm, 相似文献
16.
有限元法在金属高速切削加工技术中的应用 总被引:1,自引:0,他引:1
阐述了有限元法在切削过程、切削加工表面残余应力计算、切削热和切削温度、以及切屑形成机理等高速金属切削加工中的应用,总结分析了有限元法在这些方面研究取得的成果及不足,展望了高速切削加工技术的研究方向. 相似文献
17.
M. Vasundara K. P. Padmanaban 《The International Journal of Advanced Manufacturing Technology》2014,70(1-4):79-96
A review of the recent development of the machining fixture configuration/layout is presented in this paper. The literature review is mainly focused on the recently developed optimal fixture configuration under the dynamic conditions of the workpiece. In this review paper, the fixture design, fixture analysis, fixture synthesis, fixture layout design, optimization of fixture layout design, various optimization algorithms, and case studies of two- and three-dimensional workpiece geometries under dynamic conditions have been emphasized specially. The further scopes of the research are finally summarized. 相似文献
18.
Y. Wang X. Chen N. Gindy J. Xie 《The International Journal of Advanced Manufacturing Technology》2008,36(3-4):296-304
Finite element analysis (FEA) has been used to recapitulate the interactions between fixtures and components over the last
decade. Most of the researches were focussed on the 3-2-1 fixture for components with regular geometry using point-to-point
contact elements, where the fixture element is represented by a point-contacting component. Due to predicable behaviour of
the fixture–component pair, such a point-to-point contact representation may be sufficient. However, when components with
complex geometry, e.g. B-spline surfaces, which are widely used in the automotive and aero-engine industries, are of interest,
the point-to-point method can no longer be satisfactory. This paper proposes a method of FEA on a system of a fixture and
turbine blades by considering the complex contact geometry and complicated contact status of fixture–component pairs using
surface-to-surface contact elements. A complete procedure of FEA modelling including geometry simplification, contact modelling,
stiffness of locators, mesh generation, boundary condition and loading sequence is explained in detail. Having verified the
FEA prediction of the elastic deformation with the displacement of the workpiece measured by coordinate measurement machines
(CMMs), the influential factors of deformation, such as friction and machining directions, are analysed. 相似文献
19.
Development of a finite element analysis tool for fixture design integrity verification and optimisation 总被引:2,自引:1,他引:2
Nicholas Amaral Joseph J. Rencis Yiming Rong 《The International Journal of Advanced Manufacturing Technology》2005,25(5-6):409-419
Machining fixtures are used to locate and constrain a workpiece during a machining operation. To ensure that the workpiece is manufactured according to specified dimensions and tolerances, it must be appropriately located and clamped. Minimising workpiece and fixture tooling deflections due to clamping and cutting forces in machining is critical to machining accuracy. An ideal fixture design maximises locating accuracy and workpiece stability, while minimising displacements.The purpose of this research is to develop a method for modelling workpiece boundary conditions and applied loads during a machining process, analyse modular fixture tool contact area deformation and optimise support locations, using finite element analysis (FEA). The workpiece boundary conditions are defined by locators and clamps. The locators are placed in a 3-2-1 fixture configuration, constraining all degrees of freedom of the workpiece and are modelled using linear spring-gap elements. The clamps are modelled as point loads. The workpiece is loaded to model cutting forces during drilling and milling machining operations. Fixture design integrity is verified. ANSYS parametric design language code is used to develop an algorithm to automatically optimise fixture support and clamp locations, and clamping forces, to minimise workpiece deformation, subsequently increasing machining accuracy. By implementing FEA in a computer-aided-fixture-design environment, unnecessary and uneconomical “trial and error” experimentation on the shop floor is eliminated. 相似文献