首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
Multiple emulsions of W1/O/W2 type are of major interest in life sciences, offering possibilities for the encapsulation of water‐soluble active agents. In food science, they are also applied for fat reduction. The droplet size distributions of the inner and outer emulsions are of main importance as they influence the rheological and sensorial properties, the release kinetics, as well as the structural and microbial stability. However, the determination of the inner and outer droplet size distributions is a major challenge, as conventional measurement techniques cannot be applied. Pulsed‐field gradient nuclear magnetic resonance (PFG‐NMR) is well known as a non‐destructive tool for droplet size determination, especially in simple emulsions. In this work, double emulsions of the W1/O/W2 type were prepared with polyglycerol‐polyricinoleate (PGPR) and polyoxyethylen‐20‐sorbitan monolaurate (Tween 20) as emulsifiers by means of rotor‐stator emulsification machines. PFG‐NMR was applied for measurements of the inner phase (W1) droplet size distribution as well as for the characterization of the O phase. The W1 values were compared with results from laser light diffraction of simple emulsions (W1/O type) and were found to be consistent within the experimental errors, if restricted diffusion in the outer water phase (W2) and additional effects are considered.  相似文献   

3.
Nine seed oils from three different conifer families, already examined by gas chromatography and known to contain diene, triene, and tetraene C18 and C20Δ5 acids, have been reexamined by high-resolution13C nuclear magnetic resonance spectroscopy. The Δ5 acids are apparent only in the α-chains. This location is independent of chainlength, double-bond number, and the species considered and is probably a general factor of conifer seed oils. The spectra confirm the presence of oleic, linoleic, α-linolenic, and of Δ5 acids and give quantitative information about (total) n-6, n-3, and Δ5 acids that is in accord with that obtained by gas chromatography.  相似文献   

4.
The biocompatibility of contact lenses is closely related to their oxygen permeability. In hydrogel lenses, this characteristic can be attributed to the water permeability resulting from a combination of viscous and diffusive fluxes. Hydrogel lenses were studied by means of nuclear magnetic resonance (NMR) relaxation times, resulting in a mathematical model which evaluated the water self-diffusion coefficient as a quantification of the diffusive contribution to permeation. Comparing the results obtained with the data of permeability to oxygen as measured by other techniques, a reasonable agreement was shown for lenses with a higher water content (WC) with respect to lenses with a lower WC: this difference was accounted for by considering the different contribution to permeation.  相似文献   

5.
The positional distribution [α(1,3)-acyl and ß(2)-acyl] of ω3 fatty acids [18:4(n-3), 20:4(n-3), 20:5(n-3), 22:5(n-3) and 22:6(n-3)] in depot fat of Atlantic salmon (Salmo salar), harp seal oil and cod liver oil triacylglycerols has been examined by13C nuclear magnetic resonance (NMR) spectroscopy. The positional distribution data can be defined from the spectrum of the carbonyl (C1 carbon) and the methylene (C2 and glyceryl carbon) regions. In depot fat of Atlantic salmon and cod liver oil, docosahexaenoic acid (DHA) was concentrated in the ß-position of the triacylglycerides with 72.6 and 74.4%, respectively. Only 3.2% of DHA and 4.6% of eicosapentaenoic acid (EPA) were esterified to the ß-position of the triacylglycerides in harp seal oil. EPA is nearly randomly distributed in cod liver oil and muscle lipids of Atlantic salmon, with 37.8 and 39.7%, respectively, in the ß-position. In general, the13C NMR-derived data were in accordance with corresponding data reported in the literature obtained by conventional techniques.  相似文献   

6.
The effect of the molecular environment on the physical and oxidative properties of homogenized or microfluidized fish oil-in-water emulsions (5% w/w tuna oil in pH 7 phosphate buffer) stabilized by whey protein isolate (WPI, 1 or 5% w/w) or lecithin (2.5% w/w) was examined. Laser light-scattering measurements showed that WPI-stabilized emulsions had smaller particle sizes than lecithin-stabilized emulsions, and that higher pressures reduced the particle size. WPI afforded more protection against oil oxidation than did lecithin, as evidenced by the lower headspace propanal of emulsions as measured by GC-headspace analysis, despite the larger interface in WPI-stabilized emulsions. Reducing the concentration of WPI in emulsions from 5 to 1% decreased the oxidative stability of WPI-stabilized emulsions. The 1H NMR transverse relaxation times (T 2) of FA chains in emulsion droplets stabilized by the same surfactants made by homogenization or microfluidization were different and not always related to particle size. The higher mobility (i.e., longer T 2) of the unsaturated parts of the FA chains within an oil droplet, compared with the saturated parts, suggests that the unsaturated components tended to stay in the core of the oil droplets. This experimental result supports the hypothesis reported in other literature that the more unsaturated FA are buried in the oil core of oil-in-water emulsions. The lack of a universal correlation between particle size and oxidation suggests that the mobility of particles in an emulsion has an influence on the rate of oxidation.  相似文献   

7.
High-resolution13C nuclear magnetic resonance (NMR) spectra have been obtained and used to define the ω3 (n-3) fatty acid distribution in lipid extract and white muscle from Atlantic salmon (Salmo salar). The13C spectrum of lipid extracted from muscle gives quantitative information about the individual n-3 fatty acids, 18:2n-6, 20:1/22:1 and groups of fatty acids. The quantitative data compare favorably with those obtained by gas-liquid chromatography. The1H NMR spectrum of the lipid extract gives information about the amount of 22:6n-3 and the total content of n-3 fatty acids. The13C NMR technique also revealed the positional distribution (1,3- and 2-acyl) of the important 20:5n-3 and 22:6n-3 acids in the triacylglycerol molecules. In the quantitative13C NMR spectrum of white muscle, the methyl region of the acyl chains of triacylglycerols gave rise to sufficiently resolved signals to permit estimation of the total concentration of lipids and the n-3 fatty acid content. The NMR data are in good agreement with corresponding data obtained by traditional methods.  相似文献   

8.
2,5‐ Dichlorophenyl acrylate (DPA)‐co‐glycidyl methacrylate (GMA) polymers having five different compositions were synthesized in 1,4‐dioxane using benzoyl peroxide as a free‐radical initiator at 70 ± 0.5°C. Using 1H‐NMR spectroscopy, the composition of the two monomers in the copolymers was calculated by comparing the integral values of the aromatic and aliphatic proton peaks. The reactivity ratios were calculated by Fineman–Ross (r1 = 0.31 and r2 = 1.08), Kelen–Tudos (r1 = 0.40 and r2 = 1.15), and extended Kelen–Tudos (r1 = 0.39 and r2 = 1.16) methods. The nonlinear error‐in‐variables model was used to compare the reactivity ratios. The copolymers were characterized by 1H and proton decoupled 13C‐NMR spectroscopes. Gel permeation chromatography was performed for estimating the Mw and Mn and Mw/Mn of the poly(DPA) and copolymers (DPA‐co‐GMA: 09 : 91 and 50 : 50). Thermal stability of the homo‐ and copolymers was estimated using TGA [poly(DPA) > DPA‐co‐GMA (50 : 50) > DPA‐co‐GMA (09:91)], while DSC was utilized for determining the glass transition temperature. Tg increased with increased DPA content in the copolymer. The 50 : 50 mol % copolymer was chosen for curing with diethanolamine in chloroform. The cured resins were tested for the adhesive properties on leather at different temperatures (50, 90, 100, and 110°C). The resin cured at 50 °C exhibited a maximum peel strength of 1.6 N/mm, revealing a good adhesive behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1167–1174, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号