首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The Hybrid boundary node method (Hybrid BNM) is a boundary type meshless method which based on the modified variational principle and the Moving Least Squares (MLS) approximation. Like the boundary element method (BEM), it has a dense and unsymmetrical system matrix and needs to be speeded up while solving large scale problems. This paper combines the fast multipole method (FMM) with Hybrid BNM for solving 3D elasticity problems. The formulations of the fast multipole Hybrid boundary node method (FM-HBNM) which based on spherical harmonic series are given. The computational cost is estimated and an O(N) algorithm is obtained. The algorithm is implemented on a computer code written in C++. Numerical results demonstrate the accuracy and efficiency of the proposed technique.  相似文献   

2.
The fast multipole method (FMM) is applied to the dual boundary element method (DBEM) for the analysis of finite solids with large numbers of microcracks. The application of FMM significantly enhances the run-time and memory storage efficiency. Combining multipole expansions with local expansions, computational complexity and memory requirement are both reduced to O(N), where N is the number of DOFs (degrees of freedom). This numerical scheme is used to compute the effective in-plane bulk modulus of 2D solids with thousands of randomly distributed microcracks. The results prove that the IDD method, the differential method, and the method proposed by Feng and Yu can give proper estimates. The effect of microcrack non-uniform distribution is evaluated, and the numerical results show that non-uniform distribution of microcracks increases the effective in-plane bulk modulus of the whole microcracked solid.  相似文献   

3.
In this paper, an adaptive fast multipole boundary face method is introduced to implement acoustic problems analysis of 3D solids with open-end small tubular shaped holes. The fast multipole boundary face method is referred as FMBFM. These holes are modeled by proposed tube elements. The hole is open-end and intersected with the outer surface of the body. The discretization of the surface with circular inclusions is achieved by applying several special triangular elements or quadrilateral elements. In the FMBFM, the boundary integration and field variables approximation are both performed in the parametric space of each boundary face exactly the same as the B-rep data structure in standard solid modeling packages. Numerical examples for acoustic radiation in this paper demonstrated the accuracy, efficiency and validity of this method.  相似文献   

4.
The fast multipole boundary element method (FMBEM) is applied to predict the acoustic attenuation performance of reactive silencers. In order to overcome the difficulty of singular boundaries for the acoustic computation of reactive silencers with internal thin wall structure or/and perforated components, two approaches, the substructure FMBEM (Sub-FMBEM) and mixed-body FMBEM (MB-FMBEM) are proposed, and the theoretical foundations and numerical processes of the both approaches are introduced. The studies demonstrated that the ordering of column vectors and numbering of nodes in the Sub-FMBEM have great influence on the convergence of iteration, and the MB-FMBEM may reduce the number of elements and the computational complexity since it only needs to discretize one side boundary of the thin wall and perforated components and it is not necessary to create the interfaces. The Sub-FMBEM, MB-FMBEM and Sub-BEM are then employed to calculate the transmission loss of reactive silencers with thin wall components and perforated tubes, the computational accuracy and efficiency of the approaches are validated. The data of precomputing time and total iterative computational time demonstrated that, the computational efficiency of Sub-FMBEM will descend as the frequency arising, and the Sub-FMBEM may reveal higher computational efficiency than Sub-BEM only when the number of nodes is big enough.  相似文献   

5.
任意的拉-欧边界元法解大晃动问题   总被引:6,自引:0,他引:6  
本文针对可动边界问题提出了一个任意的拉格朗日-欧拉边界元法.运用该方法不仅边界上的控制点可以精确地跟踪自由面,而且可以避免单元畸变,保持良好的数值稳定性,实例计算表明这对求解大振幅晃动问题特别有效.另外文中引入了临界振幅的概念,对晃动分析中使用小振幅假设的条件进行了论证,首次给出了它的量级界限.  相似文献   

6.
本文提出并分析了抛物问题的mortar元方法。对时间变量采用向后Euler格式,对空间变量采用mortar元近似。得到L2模及能量模误差估计。  相似文献   

7.
A fast multipole boundary element method (BEM) for solving large-scale thin plate bending problems is presented in this paper. The method is based on the Kirchhoff thin plate bending theory and the biharmonic equation governing the deflection of the plate. First, the direct boundary integral equations and the conventional BEM for thin plate bending problems are reviewed. Second, the complex notation of the kernel functions, expansions and translations in the fast multipole BEM are presented. Finally, a few numerical examples are presented to show the accuracy and efficiency of the fast multipole BEM in solving thin plate bending problems. The bending rigidity of a perforated plate is evaluated using the developed code. It is shown that the fast multipole BEM can be applied to solve plate bending problems with good accuracy. Possible improvements in the efficiency of the method are discussed.  相似文献   

8.
9.
将快速多极子边界元法应用于船舶舱室噪声预测,考虑振动、刚性以及阻抗三类边界条件,计算得到舱室表面的辐射声压云图以及监测点处的声压级,通过和Virtual. Lab Acoustic软件计算结果比较验证方法的正确性;此外,通过和传统边界元法在总计算时间上的比较,表明快速多极子边界元法在计算大尺度声学问题中的高效性。  相似文献   

10.
A new fast multipole formulation for the hypersingular BIE (HBIE) for 2D elasticity is presented in this paper based on a complex-variable representation of the kernels, similar to the formulation developed earlier for the conventional BIE (CBIE). A dual BIE formulation using a linear combination of the developed CBIE and HBIE is applied to analyze multi-domain problems with thin inclusions or open cracks. Two pre-conditioners for the fast multipole boundary element method (BEM) are devised and their effectiveness and efficiencies in solving large-scale problems are discussed. Several numerical examples are presented to study the accuracy and efficiency of the developed fast multipole BEM using the dual BIE formulation. The numerical results clearly demonstrate the potentials of the fast multipole BEM for solving large-scale 2D multi-domain elasticity problems. The method can be applied to study composite materials, functionally-graded materials, and micro-electro-mechanical-systems with coupled fields, all of which often involve thin shapes or thin inclusions.  相似文献   

11.
The high solution costs and non-uniqueness difficulties in the boundary element method (BEM) based on the conventional boundary integral equation (CBIE) formulation are two main weaknesses in the BEM for solving exterior acoustic wave problems. To tackle these two weaknesses, an adaptive fast multipole boundary element method (FMBEM) based on the Burton–Miller formulation for 3-D acoustics is presented in this paper. In this adaptive FMBEM, the Burton–Miller formulation using a linear combination of the CBIE and hypersingular BIE (HBIE) is applied to overcome the non-uniqueness difficulties. The iterative solver generalized minimal residual (GMRES) and fast multipole method (FMM) are adopted to improve the overall computational efficiency. This adaptive FMBEM for acoustics is an extension of the adaptive FMBEM for 3-D potential problems developed by the authors recently. Several examples on large-scale acoustic radiation and scattering problems are presented in this paper which show that the developed adaptive FMBEM can be several times faster than the non-adaptive FMBEM while maintaining the accuracies of the BEM.  相似文献   

12.
采用声模拟理论预测气动噪声时需要大量的计算时间,快速多极方法将传统点对点计算转变为点集之间的相互作用,可以有效加速计算。基于二维自由空间格林函数的分波展开方式,推导了FW-H方程应用快速多极变换后的积分核函数与计算公式。计算了低马赫数圆柱绕流的非定常流场;并由此预测了气动声源。随后,分别采用传统方法和快速多极方法计算其声场分布。结果表明,基于分波展开方式的快速多极方法能准确计算圆柱绕流气动噪声,在频率较低时能大幅减少声场计算时间,且观测点数越多,加速效果越明显。  相似文献   

13.
Fast multipole DBEM analysis of fatigue crack growth   总被引:2,自引:1,他引:2  
A fast multipole method (FMM) based on complex Taylor series expansions is applied to the dual boundary element method (DBEM) for large-scale crack analysis in linear elastic fracture mechanics. Combining multipole expansions with local expansions, both the computational complexity and memory requirement are reduced to O(N), where N is the number of DOF. An incremental crack-extension analysis based on the maximum principal stress criterion and the Paris law is used to simulate the fatigue growth of numerous cracks in a 2D solid. Some examples are presented to validate the numerical scheme.  相似文献   

14.
A diagonal form fast multipole boundary element method (BEM) is presented in this paper for solving 3-D acoustic wave problems based on the Burton-Miller boundary integral equation (BIE) formulation. Analytical expressions of the moments in the diagonal fast multipole BEM are derived for constant elements, which are shown to be more accurate, stable and efficient than those using direct numerical integration. Numerical examples show that using the analytical moments can reduce the CPU time by a lot as compared with that using the direct numerical integration. The percentage of CPU time reduction largely depends on the proportion of the time used for moments calculation to the overall solution time. Several examples are studied to investigate the effectiveness and efficiency of the developed diagonal fast multipole BEM as compared with earlier p3 fast multipole method BEM, including a scattering problem of a dolphin modeled with 404,422 boundary elements and a radiation problem of a train wheel track modeled with 257,972 elements. These realistic, large-scale BEM models clearly demonstrate the effectiveness, efficiency and potential of the developed diagonal form fast multipole BEM for solving large-scale acoustic wave problems.  相似文献   

15.
In this paper, we present a boundary element method (BEM) solution technique for studying the three-dimensional transversely-isotropic piezoelectric half-space problems. The use of mixed alternative point force solutions for half and full-space problems presented are necessary to overcome the computation difficulties especially in the calculation of the derivatives with respect to z. Infinite boundary elements are introduced to model the surface of the half-space only when stresses at the internal points are required to be evaluated. The integration over the infinite boundary elements is bounded and some limitations of the infinite element construction are relaxed. Closed-form solutions for uniformly distributed mechanical and electrical loads acting on a circular area on the surface of half-space are derived. This theoretical work serves as a good verification tool for numerical computation. In this paper, the numerical and theoretical results show good agreement. Numerical analysis via the finite element method (FEM) is also carried out using the commercial solver ANSYS. These FEM results are used to verify against the accuracy of the BEM solution. Finally, numerical results for the case of Hertzian pressure applied to an imperfect half-space are presented. The effects of the coupled mechanical–electrical influences as well as the presence of voids are examined. This work was supported by NTU Academic Research Funds. The finite element simulation using the ANSYS code was conducted by Mr. Ji Ren. Also, the authors wish to acknowledge the journal editor and anonymous reviewers for their helpful suggestions and comments leading to improvement of the paper.  相似文献   

16.
A fast multipole boundary element method (FMBEM) for 3D multi-domain acoustic scattering problems based on the Burton-Miller formulation is presented in this paper. A multi-tree structure is designed for the multi-domain FMBEM. It results in mismatch of leaves and well separate cells definition in different domains and complicates the implementation of the algorithm, especially for preconditioning. A preconditioner based on boundary blocks is devised for the multi-domain FMBEM and its efficiency in reducing the number of iterations in solving large-scale multi-domain scattering problems is demonstrated. In addition to the analytical moment, another method, based on the anti-symmetry of the moment kernel, is developed to reduce the moment computation further by a factor of two. Frequency sweep analysis of a penetrable sphere shows that the multi-domain FMBEM based on the Burton-Miller formulation can overcome the non-unique solution problem at the fictitious eigenfrequencies. Several other numerical examples are presented to demonstrate the accuracy and efficiency of the developed multi-domain FMBEM for acoustic problems. In spite of the high cost of memory and CPU time for the multi-tree structure in the multi-domain FMBEM, a large BEM model studied with a PC has 0.3 million elements corresponding to 0.6 million unknowns, which clearly shows the potential of the developed FMBEM in solving large-scale multi-domain acoustics problems.  相似文献   

17.
岩石工程渐进破坏分析的边界元法   总被引:1,自引:0,他引:1  
本文根据内变量理论,应用均匀化技术处理岩石的变形与破坏过程,建立了岩石渐进破坏的本构关系以及相应的边界元公式并系统地给出了初应力表示下的非线性边界元计算步骤和方法。由此可有效地处理岩石的软化、膨胀、不抗拉等特性。实例计算表明本文所建立的边界元方法是有效而可靠的。  相似文献   

18.
A Smoothed Finite Element Method for Mechanics Problems   总被引:6,自引:4,他引:6  
In the finite element method (FEM), a necessary condition for a four-node isoparametric element is that no interior angle is greater than 180° and the positivity of Jacobian determinant should be ensured in numerical implementation. In this paper, we incorporate cell-wise strain smoothing operations into conventional finite elements and propose the smoothed finite element method (SFEM) for 2D elastic problems. It is found that a quadrilateral element divided into four smoothing cells can avoid spurious modes and gives stable results for integration over the element. Compared with original FEM, the SFEM achieves more accurate results and generally higher convergence rate in energy without increasing computational cost. More importantly, as no mapping or coordinate transformation is involved in the SFEM, its element is allowed to be of arbitrary shape. Hence the restriction on the shape bilinear isoparametric elements can be removed and problem domain can be discretized in more flexible ways, as demonstrated in the example problems.  相似文献   

19.
Fast HdBNM for large-scale thermal analysis of CNT-reinforced composites   总被引:1,自引:1,他引:0  
Because of their high thermal conductivities, carbon nanotubes (CNT) have promising potential in development of fundamentally new composites. To study the influence of CNTs distribution on the overall properties of a composite, the modeling of a Representative Volume Element (RVE) including a large number of CNTs that are randomly distributed and oriented is necessary. However, analysis of such a RVE using standard numerical methods faces two severe difficulties, namely the discretization of the geometry and a very large computational scale. In this paper, the first difficulty is alleviated by employing the Hybrid Boundary Node Method (HdBNM), which is a form of the boundary type meshless methods. To overcome the second difficulty, the Fast Multipole Method (FMM) is combined with the HdBNM to solve a simplified mathematical model. RVEs containing various numbers of CNTs with different lengths, shapes and alignments have been analyzed, resulting in valuable insights gained into the thermal behavior of the composite material.  相似文献   

20.
Fast Galerkin BEM for 3D-potential theory   总被引:2,自引:1,他引:1  
This paper is concerned with the development of a fast spectral method for solving direct and indirect boundary integral equations in 3D-potential theory. Based on a Galerkin approximation and the Fast Fourier Transform, the proposed method is a generalization of the precorrected-FFT technique to handle not only single-layer potentials but also double-layer potentials and higher-order basis functions. Numerical examples utilizing piecewise linear shape functions are presented to illustrate the performance of the method. The US Government retains a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号