首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The freeze‐thaw stabilities of three different rice flour gels (amylose rice flour with 28% amylose, Jasmine rice flour with 18% amylose and waxy rice flour with 5% amylose) were studied by first freezing at –18 °C for 22 h and subsequent thawing in a water bath at 30 °C, 60 °C and 90 °C, or by boiling in a microwave oven. The freeze‐thaw stability was determined for five cycles. Starch gels thawed at higher temperature exhibited a lower syneresis value (percent of water separation) than those thawed at lower temperature. Amylose rice flour gels gave the highest syneresis values (especially at the first cycle). The Jasmine rice flour gels gave a higher syneresis value than the waxy rice flour gel. Except for freezing by storage at –18 °C and thawing at 30 °C, there was no separation of water at any cycle when waxy rice flour gel was thawed at any temperature, irrespectively of the freezing methods used. Cryogenic Quick Freezing (CQF) followed by storage at –18 °C and then thawing (by boiling or by incubation at any other temperatures) gave lower syneresis values than all comparable samples frozen by storage at –18 °C. The order of syneresis values for the three types of rice flour was waxy rice flour < Jasmine rice flour < amylose rice flour. The syneresis values and the appearance of starch gels, which had gone through the freeze‐ thaw process, suggested that the order of freeze‐thaw stability of gels for the three types of rice flour was waxy > Jasmine > amylose rice flour.  相似文献   

2.
Abstract: Xanthan‐curdlan hydrogel complex (XCHC) has been shown capable of retaining moisture up to 5 freeze‐thaw cycles (FTCs); however, moisture distribution in the complex in relation to the hydrogel composition and structure remains uncharacterized. In the present study, magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR) relaxometry, rheology, and scanning electron microscopy (SEM) were used to examine the effect of water distribution and interaction with 2.0% aqueous solutions of xanthan, curdlan, and XCHC consisting of equal amounts of both polysaccharides. A gel structure with an indication of syneresis was clearly seen in the MR image of curdlan alone, whereas the distribution of protons throughout xanthan and XCHC samples remained homogeneous and showed no detectable syneresis. The three‐dimensional network, indicated by frequency sweeps, of curdlan was responsible for curdlan's gel structure. The frequency sweep and slope of the storage modulus (G′) of XCHC was significantly closer to curdlan with higher elasticity and less dependency upon angular frequency than xanthan alone. The reduction in XCHC dynamic moduli (G′ and G″) compared to curdlan could be attributed to the formation of wavy layers instead of a fully cured three‐dimensional structure. Addition of xanthan to curdlan restricted XCHC spin–spin relaxation time (T2) to intermediate and slower exchange regimes, namely approximately 110 and 342 ms, respectively, promoting the polymer's interaction with water while inhibiting interpolymer interactions found in curdlan. A 3rd proton pool with the slowest T2 seen in curdlan was not found in XCHC, correlating to the absence of syneresis. Practical Application: The combination of texture measurements and discrete noninvasive techniques was found capable of providing insightful understanding of water distribution in a gel system. These techniques may be applied to other hydrogel complexes. The XCHC system investigated has the potential to enhance freeze‐thaw stability in frozen food products by minimizing syneresis due to undesirable temperature fluctuations during distribution and consumer application.  相似文献   

3.
Tapioca starch was partially hydrolyzed by 6% (w/v) hydrochloric acid at room temperature for various lengths of time. Annealing and freeze‐thaw stability of the acid‐modified starches were studied using Differential Scanning Calorimetry (DSC). In the annealing study, as the hydrolysis time increased, the effect of annealing on narrowing and shifting the endothermic peak to a higher temperature was decreased. The endothermic transition of annealed 48‐h acid‐modified tapioca starch showed a narrow peak and a broad shoulder, corresponding to the melting of the amylopectin double helices (crystalline regions) and the retrograded partially hydrolyzed amylose, respectively. This effect of annealing on the sharpening of the endotherm was less pronounced on acid‐modified tapioca starches annealed for 192 h and 768 h, respectively. These results indicated that annealing leads to more homogeneous crystallites and this effect is enhanced when the material contains more amorphous and homogeneous domains. In the case of the freeze‐thaw stability study, the melting endotherm of recrystallized amylopectin became larger with increasing hydrolysis time. The first detectable endotherm of native tapioca retrograded gel was observed after five cycles, while all acid‐modified retrograded gels showed the melting endotherm after only one cycle. Increasing hydrolysis time may increase the proportion of short chain amylose and amylopectin molecules, which are able to form double helices, resulting in an increase in the enthalpy and a higher retrogradation rate of the gel.  相似文献   

4.
A novel technique of ultrasound‐assisted freeze‐thaw pretreatment (UFP) was developed to improve the drying efficiency of maca and bioactive amide synthesis in maca. The optimal UFP conditions are ultrasonic processing 90 min at 30 °C with 6 freeze‐thaw cycles. Samples with freeze‐thaw pretreatment (FP), ultrasound pretreatment (UP), and UFP were prepared for further comparative study. A no pretreatment (NP) sample was included as a control. The results showed that UFP improved the drying efficiency of maca slices, showing the highest effective moisture diffusivity (1.75 × 10?9 m2/s). This result was further supported by low‐field nuclear magnetic resonance (LF‐NMR) analysis and scanning electron microscopy (SEM). The rehydration capacity and protein content of maca slices were improved by UFP. More importantly, contents of bioactive macamides and their biosynthetic precursors were increased in 2.5‐ and 10‐fold, respectively. In conclusion, UFP is an efficient technique to improve drying efficiency, physicochemical properties, and bioactive macamides of maca, which can be applied in the industrial manufacture of maca products.  相似文献   

5.
This study aims to investigate chitosan (CS) with five different molecular weight (Mw) on freeze–thaw stability of Arenga pinnata starch (APS) gel subjected to five freeze–thaw cycles (FTC). The syneresis of APS gels was reduced by adding CS and the APS gel with high Mw CS had lower syneresis duo to a higher water holding capacity (P < 0.05). The addition of CS significantly decreased the hardness and molecular ordered structure of APS gel. In addition, CS could improve the microstructural stability. The results suggested that CS could effectively improve the freeze–thaw stability of APS gel, and CS with higher Mw might have more practical utility to improve stability of APS gel.  相似文献   

6.
Properties of tef starch from five varieties were compared with commercial maize starch. In most tef varieties the paste clarity (measured as % T) was similar to that of maize starch, but the paste was visually less white in colour. Tef starch gel texture was short and in most varieties was slightly firmer than that of maize starch. Tef starch adhesiveness was less than maize starch. Retrogradation extent of tef starch evaluated, as % gel syneresis under storage at 4 °C and ‐18 °C at 3, 7, 10 and 21 storage test days, was lower than that of maize starch. Storage with three freeze‐thaw cycles (‐18 °C 24 h; 23 °C 6 h) gave a similar trend. In tef starch initial digestion by α‐amylase and hydrolysis by mild HCl treatment was slightly higher than in maize starch, probably in part because of the smaller granule size and higher amorphous portion of tef starch. Alpha‐amylase degradation of tef starch granules was by surface erosion, probably due to the absence of surface pores in the granules.  相似文献   

7.
Jiancai Li    Mingruo  Guo 《Journal of food science》2006,71(1):C34-C38
ABSTRACT The effects of polymerized whey proteins (PWP) on functional properties of goat's milk yogurt were investigated. PWP were prepared by heating whey protein isolate (WPI) dispersion (8.0% protein, pH 7.0) at 90 °C for 30 min. Three reconstituted goat milk (RGM) (12% total solids [TS] as control; RGM with 2.4% unheated WPI; and RGM with 2.4% PWP) and 1 RGM with 16.7% TS were prepared and inoculated with 0.04% yogurt starter culture. Inoculated milk was incubated at 43 °C for 5 h, cooled to 4 °C in an ice‐water bath, and then placed at refrigerator (4 °C) overnight before testing. Incorporation of PWP significantly (P < 0.001) increased the viscosity (by 80%) and decreased the syneresis (by 25%) of the yogurt samples, whereas addition of unheated WPI did not significantly affect the viscosity and syneresis compared with the control. There were no changes in pH, TS, ash, fat, protein, and lactose contents among yogurt samples except the solids fortified control. Yogurt with 16.7% TS had the lowest syneresis but did not improve in viscosity. Transmission electron microscopy micrographs demonstrated that the microstructure of the goat's milk yogurt gel with PWP was denser than the control. Results of this study indicate that polymerized whey proteins may be a novel protein‐based thickening agent for improving the functional properties of goat's milk yogurt and other similar products.  相似文献   

8.
The effect of sucrose at different concentrations (0, 10, 20 and 30%) on rheological properties of rice starch pastes (5% w/w) was investigated in steady and dynamic shear. The steady shear properties of rice starch‐sucrose composites were determined from rheological parameters for power law and Casson flow models. At 25°C all the starch‐sucrose composites exhibited a shear‐thinning flow behavior (n=0.25–0.44). The presence of sucrose resulted in the decrease in consistency index (K), apparent viscosity (ηa,100) and yield stress (σoc). Dynamic frequency sweeps at 25°C indicated that starch‐sucrose composites exhibited weak gel‐like behavior with storage moduli (G′) higher than loss moduli (G′′). G′ and G′′ values decreased with the increase in sucrose concentration. The dynamic (η*) and steady‐shear (ηa) viscosities at various sucrose concentrations did not follow the Cox‐Merz superposition rule. G′ values as a function of aging time (10 h) at 4°C showed a pseudoplateau region at long aging times. In general, the values of G′ and G′′ in rice starch‐sucrose composites were reduced in the presence of sucrose and depended on sucrose concentration.  相似文献   

9.
Native and defatted high amylose (about 70%) maize starch gels were freeze‐dried or repeatedly freeze‐thawed, and the effects of the treatments on the crystallinity, pasting viscosity, and resistance to digestive enzymes of the dried starch were examined. Both native and defatted starches showed a B‐type crystal structure in the X‐ray diffractogram, but the crystallinity was decreased by repeating the freeze‐thawing cycle. In the DSC thermogram, the freeze‐thawed starches exhibited two endothermic transitions in the temperature ranges of 90—110 °C and 130—160 °C, representing amyloselipid complexes and amylose‐amylose double helix crystals, respectively. By defatting, the melting enthalpy for the amylose double helices was increased, indicating that the residual lipids inhibited the amylose crystal formation. Ice crystals in the starch gel matrix became smaller and the ice cell membrane became thinner as freeze‐thawing was repeated. The freeze‐dried or freeze‐thawed starch powders swelled to a paste by heating in water as did typical granular starch, but the setback by cooling was significantly high due to the rapid retrogradation of leached amylose. By the treatments, the resistance of the starch to digestive enzymes was also raised. The defatted starches displayed greater paste viscosity and resistance to digestive enzymes than the native starches. But the overall viscosity was decreased as the number of freeze‐thawing cycles increased.  相似文献   

10.
Abstract: Stability of entrapped crystalline β‐carotene as affected by water activity, solids microstructure, and composition of freeze‐dried systems was investigated. Aliquots (1000 mm3, 20% w/w solids) of solutions of maltodextrins of various dextrose equivalents (M040: DE6, M100: DE11, and M250: DE25.5), M100‐sugars (1:1 glucose, fructose and sucrose), and agar for gelation with dispersed β‐carotene were frozen at ?20, ?40, or ?80 °C and freeze‐dried. Glass transition and α‐relaxation temperatures were determined with differential scanning calorimetry and dynamic mechanical analysis, respectively. β‐Carotene contents were monitored spectrophotometrically. In the glassy solids, pore microstructure had a major effect on β‐carotene stability. Small pores with thin walls and large surface area allowed β‐carotene exposure to oxygen which led to a higher loss, whereas structural collapse enhanced stability of β‐carotene by decreasing exposure to oxygen. As water plasticized matrices, an increase in molecular mobility in the matrix enhanced β‐carotene degradation. Stability of dispersed β‐carotene was highest at around 0.2 aw, but decreasing structural relaxation times above the glass transition correlated well with the rate of β‐carotene degradation at higher aw. Microstructure, aw, and component mobility are important factors in the control of stability of β‐carotene in freeze‐dried solids Practical Application: β‐Carotene expresses various nutritional benefits; however, it is sensitive to oxygen and the degradation contributes to loss of nutritional values as well as product color. To increase stability of β‐carotene in freeze‐dried foods, the amount of oxygen penetration need to be limited. The modification of freeze‐dried food structures, for example, porosity and structural collapse, components, and humidity effectively enhance the stability of dispersed β‐carotene in freeze‐dried solids.  相似文献   

11.
This study investigated the effect of 5 freeze–thaw cycles (freezing at −18°C for 12 h and then thawing at 4°C for approximately 12 h) on the meat quality, proximate composition, water distribution and microstructure of bovine rumen smooth muscle (BSM). As the number of freeze–thaw cycles increased, BSM pH, shear force, water content and protein content decreased by 3.06%, 35.50%, 14.49% and 21.11%, respectively, whereas BSM thawing loss, cooking loss, pressing loss, total aerobic count (TAC), ash content and fat content increased by 108.12%, 47.75%, 78.33%, 90.99%, 105% and 35.20%, respectively. The freeze–thaw cycles resulted in greater protein and lipid oxidation, as evidenced by a 36.46% reduction in the sulfhydryl content and a 209.06% and 338.46% increase in the carbonyl and malondialdehyde contents, respectively. Ice crystal formation disrupted the structural integrity of the muscle tissue. Low-field nuclear magnetic resonance results showed that the freeze–thaw cycles prolonged the relaxation times (T2b, T21 and T22), indicating that immobile water shifted to free water, and consequently, free water mobility increased. After 3 freeze–thaw cycles, the decline in shear force slowed, the increase in thawing loss became accelerated, and the TAC approached the domain value (6 log colony-forming units/g). Therefore, the number of freeze–thaw cycles of smooth muscle during transport, storage and distribution should be controlled to 3 or fewer. The current results provide a theoretical basis and data support for the further utilisation and culinary processing of smooth muscle.  相似文献   

12.
Studies were carried out on starch isolated from ginger spent, obtained after the extraction of oleoresin, to explore the possibility of its use as a food ingredient. AM content was found to be 25.5%. SEM showed the granules were disc‐shaped as well as ovoid with a smooth surface. The average granule size was 22.5 ± 3.5 µ in length and 16.9 ± 4.8 µ in width with thickness of ∼3 µ. Ginger spent starch exhibited a high gelatinization temperature (88°C), peak viscosity (678 Brabender units (BU)) and cold paste viscosity (777 BU). It also possessed low paste clarity and higher freeze–thaw stability. Dynamic rheological properties of ginger spent flour, measured using parallel plate geometry showed that the storage modulus (G′) increased and loss modulus (G″) decreased as a function of frequency. Starch from ginger spent flour with high gelatinization temperature and low in vitro starch digestibility (45%) is suitable to use for development of speciality food formulations.  相似文献   

13.
Foaming as a pretreatment was used prior to freeze‐drying of Bifidobacterium longum RO175 to investigate the potential acceleration of the drying rate and increase in microorganism viability after the process. A study on storage of foamed and nonfoamed freeze‐dried products at 4 °C completed this study. B. longum RO175 in foamed medium could be freeze‐dried in 1/7 to 1/4 of the time required for nonfoamed suspensions. In addition, foamed suspensions presented higher viability immediately after freeze‐drying (13.6% compared to 12.81 % or 11.46%, depending on the cryoprotective media). Refrigerated storage led to a reduction in B. longum RO175 viability for all tested protective agents (foamed and nonfoamed). No correlation between glass transition temperature and stability of probiotic powders was observed during storage. In addition, lower viability after 56 d of storage was observed for foamed materials, probably due to foam porous structure and higher hygroscopicity, and oxygen presence and moisture pickup during storage.  相似文献   

14.
Amylomaltase (α‐1,4‐glucanotransferase, AM; EC 2.4.1.25) from Corynebacterium glutamicum expressed in Escherichia coli was used to prepare the enzyme‐modified cassava starch for food application. About 5% to 15% (w/v) of cassava starch slurries were incubated with 1, 3, or 5 units of amylomaltase/g starch. Apparent amylose, amylopectin chain length distribution, thermal properties, freeze–thaw stability, thermo‐reversibility, and gel strength of the obtained modified starches were measured. The apparent amylose content and retrogradation enthalpy were lower, whereas the retrogradation temperatures, freeze–thaw stability, and thermo‐reversibility were higher than those of the native cassava starch. However, when amylomaltase content was increased to 20 units of amylomaltase/g starch and for 24 h, the modified starch showed an improvement in the thermo‐reversibility property. When used in panna cotta, the gel strength of the sample using the 20 units/24 h modified cassava starch was similar to that of using gelatin.  相似文献   

15.
Selected starches, i.e. waxy maize, amaranth, quinoa, wheat, millet and buckwheat starches, were investigated with respect to their technological properties such as gelatinization, stability to mechanical stress, resistance to conditions and stability in continuous freeze/thaw cycles. Technological properties are correlated with molecular features such as branching characteristics in terms of iodine-complexing potential, molar mass, occupied glucan-coil volume, packing density of glucan coils and rheological properties. Waxy maize and amaranth starches were found to be amylopectin-type short-chain branched (scb) glucans with weight average molar masses Mw = 17 × 106 g/mol and 12 × 106 g/mol, respectively. Waxy maize starch had a high gelatinization potential, high viscosity at 95 °C (340 mPas) low stability at acidic conditions, average stability to shearing and good freeze/thaw stability. For amaranth starch a viscosity of 122 mPas at 95 °C, low resistance to acid, but high stability to applied shearing and even high freeze/thaw stability was determined. Investigated quinoa starch was classified as scb-type glucan, however, the branches are significantly longer than those of waxy maize and amaranth. With a Mw = 11 × 106 g/mol and a viscosity of 187 mPas at 95 °C, this sample is comparably resistant to acidic conditions and to shearing, but instable in freeze/thaw experiments. Wheat, millet and buckwheat starches contain significant percentages of amylose-type long-chain branched (lcb) glucans (22.1, 32.1 and 24.3 %, respectively) with Mw values of 5 × 106 g/mol, 12 × 106 g/mol and 15 × 106 g/mol, respectively. Wheat starch, with a viscosity of 107 mPas at 95 °C, shows low stability under acidic conditions, but high stability to shearing. Wheat and millet starches, but not buckwheat starch, form weak gels in the course of subsequent freeze/thaw cycles. Millet starch, with a viscosity of 101 mPas at 95 °C was found to be moderately stable under acidic conditions and to shearing. Buckwheat starch with a viscosity of 230 mPas at 95 °C shows no acid resistance and is instable upon shearing but performs very well in freeze/thaw experiments.  相似文献   

16.
The quality loss in fish during freeze–thaw cycles is considered one of the major issues caused mainly by temperature fluctuations during cold storage. The present work is aimed to illustrate the effects of brown algal phlorotannins (BAP) and ascorbic acid (AA) on physiochemical properties of minced snapper muscle through different freeze–thaw cycles. Both AA and BAP could retard lipid and protein oxidation, respectively, and synergistically. The Ca2+‐ATPase activity can be protected with the addition of antioxidants. The addition of 0.1% (w/w) AP showed 22.6% higher activity as compared with other groups especially during three freeze–thaw cycles. Cooking loss was efficiently inhibited and 0.1% AA + 0.3% BAP group showed 25.5% lower than control. Antioxidant is also helpful to maintain gel‐forming ability of minced snapper and 0.1% AA + 0.1% BAP group showed the best. These results revealed that both AA and BAP could prevent minced fish by inhibiting the protein denaturation during freeze–thaw cycles.  相似文献   

17.
The use of freeze‐drying for concentrating lime Rangpur juice was investigated. This procedure allowed obtaining concentrated Rangpur lime juices between 23 and 51.3 °Brix, without affecting their organoleptic and nutritional characteristics. The efficiency of the procedure was inversely related to the film thickness of the matrix to be lyophilised. The sublimation speed per unit area diminished with the reduction in the residual moisture content of the juice. The mathematical model that fitted to the concentration procedure allowed to predict the time required for concentrating Rangpur lime by freeze‐drying starting from samples of different thickness. When compared with other citric juices evaluated, the Rangpur lime juice was the most suitable for freeze‐drying concentration. The results could be used to devise optimal industrial freeze‐drying cycles for processing Rangpur lime juices at different concentrations.  相似文献   

18.
Over last years, consumers demand products that are easy to eat with health benefits. The use of extruded flours would be a good choice to reduce the preparation time. Moreover, high protein intakes would have a positive influence on the health of specific population groups. Therefore, this study aims to assess how the addition of vegetal (rice and pea) and animal (egg white and whey) proteins could influence the characteristics of purees prepared with extruded maize flour. Rheological behaviour, microstructure, viscosity, syneresis and sensory evaluation of purees were determined. The incorporation of vegetal proteins hardly modified the puree viscosity before and after heating, and reduced the syneresis after the freeze–thaw process. Animal proteins reduced the viscosity and G′–G″ at 30 °C and increased them after heating, and also increased the syneresis after cooling and freezing. Finally, pea and egg white proteins hardly modified the overall acceptability while whey protein improved it.  相似文献   

19.
The texture stability of hydrogel complexes containing curdlan gum over multiple freeze–thaw cycles (FTCs) was investigated. The hydrogels formed by curdlan and xanthan gum, locust bean gum, carrageenan or guar gum at various combinations were stored at 4C for 24 h before subjected to five FTCs alternating between − 16 (18 h) and 25C (6 h). Xanthan/curdlan hydrogels showed the highest freeze–thaw stability in terms of syneresis, heat stability and adhesiveness. The viscosity of xanthan/curdlan combination was the lowest among all samples studied yet the most stable over the five FTCs, whereas significant changes were observed with locust bean/curdlan hydrogels. The guar/curdlan combination before freeze–thaw treatments exhibited predominant elasticity; however, as the cycles progressed the elasticity decreased. The most stable gel strength was achieved when curdlan was combined with guar or xanthan at 2% (w/v) total concentration, while carrageenan/curdlan gels were the least stable.

PRACTICAL APPLICATIONS


Texture instability remains the most significant challenge for frozen food products, especially with inevitable post-production temperature fluctuations. Loss of moisture and changes in textural attributes often results in significant reduction of product quality. Precise control of hydrogel complexes that provide texture stabilization over multiple freeze–thaw cycles will enhance the quality of existing products while enabling the development of new ones.  相似文献   

20.
Granular cold‐water‐soluble (GCWS) starches were prepared from banana starch treating it with 40 and 60% aqueous ethanol at two controlled temperatures (25 and 35 °C). GCWS starches prepared at 25 °C and with 40 and 60% aqueous ethanol had the lowest cold‐water solubility, that prepared with 40% aqueous ethanol at 35 °C and stored at room temperature showed low tendency to retrogradation, as assessed by transmittance. Solubility and swelling profiles were similar for GCWS starches and the freeze‐thaw stability of GCWS starches was increased as compared with native starch. The apparent viscosity of GCWS banana starches was higher than that of its native starch counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号