首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monochlorotriazinyl‐β‐cyclodextrin (MCT‐β‐CD) was covalently bonded to cellulose powder. The amount of MCT‐β‐CD bonded to cellulose could be determined by infrared spectroscopy. The coupling reaction was characterized as a physical adsorption of the MCT‐β‐CD on the cellulose powder followed by an apparently zero order chemical reaction. The reaction rate constant was found to be k = 6.43 · 10‐4 ± 0.11 · 10‐4 g g‐1 s‐1. The immobilized cyclodextrin was able to include and release d‐limonene as a model flavor compound. The maximum molar inclusion ratio was 0.85, which is the same inclusion ratio as for d‐limonene in native β‐cyclodextrin. The release rates of dlimonene included in the fixed MCT‐β‐CD were monitored at various relative humidities and 50 °C. The release kinetics could be modeled using the Avrami equation. These results demonstrate that flavors as well as other hydrophobic compounds can be included and released from MCT‐β‐CD immobilized on cellulose.  相似文献   

2.
In this work, the effect of pulsed electric fields (PEF) treatment on the interactions between amino acids (using L‐Phenylalanine: L‐Phe) and sugar (using β‐Cyclodextrin: β‐CD) complex was analysed by fluorescence spectroscopy, Raman spectroscopy and simultaneous thermal analyzer. Moreover, the molecular dynamics of β‐CD–L‐Phe inclusion complex treated by PEF was calculated by molecular modelling. The results indicated that β‐CD–L‐Phe complexes are formed by a molar ratio of 1:1, and the stability constant of such complexes increased from 147 to 614 M?1 by PEF treatment. Thermal characterisations of β‐CD–L‐Phe complexes indicated that the PEF treatment could increase the yield of complexes. The PEF treatment resulted in an increase in the reaction enthalpy of β‐CD–L‐Phe inclusion complexes by DSC curve. These results show that PEF treatment has the potential to promote the chemical processing, especially the small organic molecules participate in inclusion or cross‐linking reaction.  相似文献   

3.
With a view to utilise yeast (1→3)‐β‐d ‐glucan as biological response modifiers with better water solubility, carboxymethylation was carried out by a two‐step alkalisation and etherification with monochloroacetic acid. Four technological parameters of carboxymethylation were investigated by orthogonal experiments for obtaining the maximum degree of substitution (DS), apparent viscosity (η) and solubility of carboxymethyl derivatives. In view of the orthogonal analysis, the optimal technological parameters were reaction temperature 50 °C, total reaction time 5 h, 3 mL of 50% sodium hydroxide as the second alkali dosage and 15 mL of 4 m chloroacetic acid. In addition, it was found that ball milling pretreatment for original (1→3)‐β‐d ‐glucan can be an advantage for carboxymethylation. By contrast, DS, η and solubility of carboxymethyl product increased 24%, 6% and 22%, respectively, suggesting the effect of ball milling pretreatment could not be neglected on improvement of DS, η and solubility for carboxymethyl products.  相似文献   

4.
This study was conducted to investigate the structural characterisation of β‐cyclodextrin (β‐CD) crosslinked by adipic acid. β‐CD was treated with different concentrations (0%, 5%, 10% and 15%, w/v) of adipic acid. Different instruments, such as scanning electron microsope (SEM), Fourier‐transform infrared (FT‐IR) spectroscopy and 1H and 13C nuclear magnetic resonance (NMR) spectra were used to find out chemical structure in the crosslinked β‐CD. SEM analysis suggested that crosslinking β‐CD with 15% adipic acid changed the original morphology and considerably increased the particle size of the raw material. FT‐IR spectroscopy data showed that an intensive absorption band at 1706 cm?1 was present in the β‐CD samples treated with 10% and 15% adipic acid, indicating a crosslinking between hydroxyl groups of β‐CD and carboxyl groups of adipic acid. NMR spectra revealed that the ester linkages between hydroxyl groups of β‐CD and carboxyl groups of adipic acid were formed after crosslinking of β‐CD with adipic acid.  相似文献   

5.
Streptomyces sp Mo endo‐β‐1,3‐glucanase was found to have hydrolyzing activity toward curdlan and released laminarioligosaccharides selectively. The molecular weight was estimated to be 36000 Da and its N‐terminal amino acid sequence was VTPPDISVTN. The optimal pH was 6 and the enzyme was found to be stable from pH 5 to 8. The optimal temperature was 60 °C and the activity was stable below 50 °C. The enzyme hydrolyzed selectively curdlan containing only β‐1,3 linkages. The enzyme had 89% relative activity toward Laminaria digitata laminarin, which contains a small amount of β‐1,6 linkages compared with curdlan, while Eisenia bicyclis laminarin with a higher amount of β‐1,6‐linkages, was not hydrolyzed. Mo enzyme adsorbed completely on curdlan powder. The enzymatic hydrolysis of curdlan powder resulted in the accumulation of laminaribiose (yield 81.7%). Trisaccharide was inevitably released from the hydrolysis of laminarioligosaccharides with 5 to 7 degrees of polymerization (DP). Although the enzyme cleaved off disaccharide (DP 2) from tetrasaccharide (DP 4), the reaction rate was lower than those of DP 5 to 7. The results indicated that the active site of Mo endo‐β‐1,3‐glucanase can efficiently recognize glucosyl residue chain of greater than DP 5 and hydrolyzes the β‐1,3 linkage between the 3rd and 4th glucosyl residue.  相似文献   

6.
Owing to superior properties such as temperature resistance and salt tolerance etc., modified polyacrylamide (PAM) as one of the main injected polymers has been widely investigated to enhance oil production in reservoirs. Herein, a novel poly(AM‐co‐A‐β‐CD‐co‐AE) polymer was synthesized by utilizing β‐CD and AE to copolymerize with AM and characterized by FT‐IR and SEM. Furthermore, the temperature resistance and salt tolerance of poly(AM‐co‐A‐β‐CD‐co‐AE) polymer were explored. The results showed that the presence of the poly(AM‐co‐A‐β‐CD‐co‐AE) polymer better achieved temperature resistance and salt tolerance properties than is the case with PAM, which has potential application for enhancing oil recovery in the high‐temperature and high‐mineralization oilfield. On the other hand, the inhibition performance of poly(AM‐co‐A‐β‐CD‐co‐AE) polymer as a corrosion inhibitor was evaluated by SEM and electrochemical techniques. SEM observations of the carbon steel surface confirmed the protective role of the corrosion inhibitor. The results of potentiodynamic polarization and EIS measurements on the corrosion inhibition of carbon steel samples in 0.5 M sulfuric acid solutions revealed that the highest inhibition efficiency of it over 90% was obtained, indicating poly(AM‐co‐A‐β‐CD‐co‐AE) polymer acts as a more efficient corrosion inhibitor for carbon steel.  相似文献   

7.
The activities of four natural phenolics, kaempferol, galangin, carnosic acid and polydatin in scavenging free radicals, inhibiting advanced glycation end‐product (AGE) formation, α‐amylase and α‐glucosidase and trapping methylglyoxal (MGO), were evaluated in this study. Carnosic acid and galangin had the highest activity in scavenging free radicals. Kaempferol and galangin had the greatest activity in preventing bovine serum albumin (BSA) against glycation and reducing glycated proteins. Polydatin had the greatest performance in trapping MGO to reduce glycation reaction. However, there was no significant difference for kaempferol, galangin and carnosic acid in inhibiting AGE formation by BSA‐MGO reaction. Kaempferol, galangin and carnosic acid were the competitive inhibitors for α‐amylase, while kaempferol and carnosic acid were noncompetitive inhibitors for α‐glucosidase. However, polydatin showed as a mixed noncompetitive inhibitor for both α‐amylase and α‐glucosidase. The results indicated that the four natural phenolics have potential in inhibiting AGE production and the digestive enzymatic activity with different mechanisms.  相似文献   

8.
In this study, β‐cyclodextrin (β‐CD) was used to form an inclusion complex with peony seed oil (PSO), in order to improve its stability, transport convenience and bioavailability. Single‐factor optimisation method was applied to determine the optimum inclusion conditions. The inclusion complexes were prepared by saturated solution method and characterised by GC‐MS, SEM, FT‐IR, XRD, DSC and 1H NMR analyses. All results suggested that PSO was successfully entered into the β‐CD cavity. What is more, inclusion rate of PSO reached 68.72 ± 2.14%, resulting in a product of 25.97% PSO content, and the unsaturated fatty acids, similar to PSO, accounted for 90.05% of all fat acids in complex. The linolenic acid in inclusion complex exhibited 64.84% higher bioavailability than that in PSO. The inclusion complex possessed of better stability for storage and transportation. Overall, the fabricated complex improved the feature of PSO and thus could be used for novel applications.  相似文献   

9.
The aim of this study was to produce and characterize inclusion complexes (IC) between β‐cyclodextrin (β‐CD) and orange essential oil (OEO) or eucalyptus essential oil (EEO), and to compare these with their pure compounds and physical mixtures. The samples were evaluated by chemical composition, morphology, thermal stability, and volatile compounds by static headspace‐gas chromatography (SH‐GC). Comparing the free essential oil and physical mixture with the inclusion complex, of both essential oils (OEO and EEO), it was observed differences occurred in the chemical composition, thermal stability, and morphology. These differences show that there was the formation of the inclusion complex and demonstrate the necessity of the precipitation method used to guarantee the interaction between β‐CD and essential oils. The slow loss of the volatile compounds from both essential oils, when complexed with β‐CD, showed a higher stability when compared with their physical mixtures and free essential oils. Therefore, the results showed that the chemical composition, molecular size, and structure of the essential oils influence the characteristics of the inclusion complexes. The application of the β‐CD in the formation of inclusion complexes with essential oils can expand the potential applications in foods.  相似文献   

10.
Some functional and retrogradation properties of native and heat‐moisture treated potato and wheat starches were examined in the presence of hydroxypropyl β‐cyclodextrin (HPβ‐CD). HPβ‐CD increased swelling factor, amylose leaching, and solubility of both native and heat‐moisture treated wheat starches but it had less impact on corresponding potato starches. Gelatinization enthalpy of native wheat starch was decreased in the presence of HPβ‐CD but was increased in potato starch with increasing concentration. Reduction of amylose‐lipid complex endotherm in both native and heat‐moisture treated wheat starch was observed in the presence of HPβ‐CD. Heat‐moisture treatment did not change the transition parameters of amylose‐lipid complex showing its resistance to hydrothermal treatment. HPβ‐CD greatly decreased the pasting temperature of wheat starch. Cold paste viscosity of both native and heat‐moisture treated wheat starch was increased by HPβ‐CD to a greater extent than corresponding potato starch. Amylopectin retrogradation of all the starches was unaffected in the presence of HPβ‐CD but heat‐moisture treatment slightly decreased retrogradation of potato starch. These results suggest that HPβ‐CD can disrupt the amylose‐lipid complex within the starch granule in both native and heat‐moisture treated wheat starch but has no influence on amylopectin retrogradation. However, greatly increased wheat starch setback with HPβ‐CD indicates its greater effect on wheat starch amylose retrogradation.  相似文献   

11.
The finding of new isolates of non‐Saccharomyces yeasts, showing beneficial enzymes (such as β‐glucosidase and β‐xylosidase), can contribute to the production of quality wines. In a selection and characterization program, we have studied 114 isolates of non‐Saccharomyces yeasts. Four isolates were selected because of their both high β‐glucosidase and β‐xylosidase activities. The ribosomal D1/D2 regions were sequenced to identify them as Pichia membranifaciens Pm7, Hanseniaspora vineae Hv3, H. uvarum Hu8, and Wickerhamomyces anomalus Wa1. The induction process was optimized to be carried on YNB‐medium supplemented with 4% xylan, inoculated with 106 cfu/mL and incubated 48 h at 28 °C without agitation. Most of the strains had a pH optimum of 5.0 to 6.0 for both the β‐glucosidase and β‐xylosidase activities. The effect of sugars was different for each isolate and activity. Each isolate showed a characteristic set of inhibition, enhancement or null effect for β‐glucosidase and β‐xylosidase. The volatile compounds liberated from wine incubated with each of the 4 yeasts were also studied, showing an overall terpene increase (1.1 to 1.3‐folds) when wines were treated with non‐Saccharomyces isolates. In detail, terpineol, 4‐vinyl‐phenol and 2‐methoxy‐4‐vinylphenol increased after the addition of Hanseniaspora isolates. Wines treated with Hanseniaspora, Wickerhamomyces, or Pichia produced more 2‐phenyl ethanol than those inoculated with other yeasts.  相似文献   

12.
The binding interaction between‐epigallocatechin‐3‐gallate (EGCG) and bovine β‐lactoglobulin (βLG) was thoroughly studied by fluorescence, circular dichroism (CD) and protein–ligand docking. Fluorescence data revealed that the fluorescence quenching of βLG by EGCG was the result of the formation of a complex of βLG–EGCG. The binding constants and thermodynamic parameters at two different temperatures and the binding force were determined. The binding interaction between EGCG and βLG was mainly hydrophobic and the complex was stabilised by hydrogen bonding. The results suggested that βLG in complex with EGCG changes its native conformation. Furthermore, preheat treatment (90 °C, 120 °C) and emulsifier (sucrose fatty acid ester) all boosted the binding constants (Ka) and the binding site values (n) of the βLG‐EGCG complex. This study provided important insight into the mechanism of binding interactions of green tea flavonoids with milk protein.  相似文献   

13.
BACKGROUND: Diabetes mellitus (DM) is a chronic metabolic disorder characterized by defects in insulin secretion and action, which can lead to damaged blood vessels and nerves. With respect to effective therapeutic approaches to treatment of DM, much effort has being made to investigate potential inhibitors against α‐glucosidase and α‐amylase from natural products. The edible marine brown alga Ecklonia cava has been reported to possess various interesting bioactivities, which are studied here. RESULTS: In this study, five phloroglucinal derivatives were isolated from Ecklonia cava: fucodiphloroethol G ( 1 ), dieckol ( 2 ), 6,6′‐bieckol ( 3 ), 7‐phloroeckol ( 4 ) and phlorofucofuroeckol A ( 5 ); compounds 1, 3 and 4 were obtained from this genus for the first time and with higher yield. The structural elucidation of these derivatives was completely assigned by comprehensive analysis of nuclear magnetic spectral data. The anti‐diabetic activities of these derivatives were also assessed using an enzymatic inhibitory assay against rat intestinal α‐glucosidase and porcine pancreatic α‐amylase. Most of these phlorotannins showed significant inhibitory activities in a dose‐dependent manner, responding to both enzymes, especially compound 2 , with the lowest IC50 values at 10.8 µmol L?1 (α‐glucosidase) and 124.9 µmol L?1 (α‐amylase), respectively. Further study of compound 2 revealed a non‐competitive inhibitory activity against α‐glucosidase using Lineweaver‐Burk plots. CONCLUSION: These results suggested that Ecklonia cava can be used for nutritious, nutraceutical and functional foods in diabetes as well as for related symptoms. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Considering the numerous beneficial effects in human health ascribed to carotenoids, studies were performed to investigate the modification of carotenoid amount and composition during apricot enzymatic browning. First works on bruised apricot purees have shown a trans‐β‐carotene isomerisation (20%) induced by enzymatic browning. To clarify this isomerisation, oxidation of chlorogenic acid in presence of trans‐β‐carotene, catalysed by purified apricot polyphenoloxidase (PPO), was followed by HPLC and polarography. Isomerisation rate of trans‐β‐carotene in its cis isomer was found to increase with chlorogenic acid concentration. Moreover, trans‐β‐carotene was shown to be a potent inhibitor of phenol degradation. This inhibition was partially ascribed to PPO inhibition (non‐competitive inhibitor towards phenol with an apparent Ki close to 0.5 mM , a mixed type inhibitor towards oxygen with an apparent Ki close to 0.15 mM ). The additional inhibition was explained by non‐enzymatic reactions involving trans‐β‐carotene and chlorogenic acid o‐quinones and leading to phenol regeneration and carotene isomerisation. © 2000 Society of Chemical Industry  相似文献   

15.
Ten compounds were isolated and purified from the peels of gold‐red apple (Malus domestica) for the 1st time. The identified compounds are 3β, 20β‐dihydroxyursan‐28‐oic acid (1), 2α‐hydroxyoleanolic acid (2), euscaphic acid (3), 3‐O‐p‐coumaroyl tormentic acid (4), ursolic acid (5), 2α‐hydroxyursolic acid (6), oleanolic acid (7), betulinic acid (8), linolic acid (9), and α‐linolenic acid (10). Their structures were determined by interpreting their nuclear magnetic resonance and mass spectrometry (MS) spectra, and by comparison with literature data. Compound 1 is new, and compound 2 is herein reported for the 1st time for the genus Malus. α‐Glucosidase inhibition assay revealed 6 of the triterpenoid isolates as remarkable α‐glucosidase inhibitors, with betulinic acid showing the strongest inhibition (IC50 = 15.19 μM). Ultra‐performance liquid chromatography‐electrospray ionization MS analysis of the fruit peels, pomace, flesh, and juice revealed that the peels and pomace contained high levels of triterpenes, suggesting that wastes from the fruit juice industry could serve as rich sources of bioactive triterpenes.  相似文献   

16.
This study was carried out to investigate the optimum conditions of cross‐linking β‐cyclodextrin (β‐CD) and recycling for cholesterol removal in milk and cream. The cross‐linked β‐CD was prepared with a 15% adipic acid solution, and the water solubility of the β‐CD was measured for the optimum conditions based on mixing temperature, mixing time, cross‐linking temperature, cross‐linking reaction time and cooling time. In the results of this study, optimum conditions were 80 °C mixing temperature, 2 h mixing time, 60 °C cross‐linking temperature, 24 h cross‐linking reaction time and 48 h cooling time. After determining the optimum conditions, the recyclable yields of the cross‐linked β‐CD ranged from 90.01% to 55.17% in six recyclings and the percentage of cholesterol removal by 15% cross‐linked β‐CD was over 90% until eighth recycling. On the basis of the results, this study suggests that 15% adipic acid‐added cross‐linked β‐CD maximised recyclable yield and that cholesterol removal was improved during recycling.  相似文献   

17.
Ovine whey proteins were fractionated and studied by using different analytical techniques. Anion‐exchange chromatography and reversed‐phase high‐performance liquid chromatography (HPLC) showed the presence of two fractions of β‐lactoglobulin but only one of α‐lactalbumin. Gel permeation and sodium dodecyl sulfate (SDS)‐polyacrylamide gel electrophoresis allowed the calculation of the apparent molecular mass of each component, while HPLC coupled to electrospray ionisation‐mass spectrometry (ESI‐MS) technique, giving the exact molecular masses, demonstrated the presence of two variants A and B of ovine β‐lactoglobulin. Amino acid compositions of the two variants of β‐lactoglobulin differed only in their His and Tyr contents. Circular dichroism spectroscopy profiles showed pH conformation changes of each component. The thermograms of the different whey protein components showed a higher heat resistance of β‐lactoglobulin A compared to β‐lactoglobulin B at pH 2, and indicated high instability of ovine α‐lactalbumin at this pH.  相似文献   

18.
Cyclodextrins (CDs) are cyclic oligosaccharides derived from the enzymatic degradation of starch. Emulsifying functionality of β‐cyclodextrin (β‐CD) upon its complexation with selected solvents (octanol, decane, and toluene) was studied. In several tests, the three‐phase systems containing the emulsion fraction in the middle position were obtained. The examination of variations in the phase behavior of the test systems showed that the decane/β‐CD/water system had the highest emulsion phase volume when β‐CD at concentration of 10% w/v was used. A reduction in interfacial tension (IFT) of the oil–water interface in each test system was observed with the following order: toluene, decane, and octanol. The precipitated fraction obtained upon centrifugation of the emulsion phase, was structurally characterized as the inclusion complex (IC) formed between β‐CD and each of the three test solvents. The wettability of the IC particles was determined through contact angle measurement and formation of the oil‐in‐water (O/W) Pickering emulsions was confirmed (θow<90°). With use of size distribution data, the ICs particles as the microparticles (1–10 µm) were found to be the main species involved in the formation and stabilization of the emulsions.  相似文献   

19.
20.
Beta‐carotene was microencapsulated by freeze‐drying using native pinhão starch, hydrolysed pinhão starch 6 dextrose equivalent (DE), hydrolysed pinhão starch 12 DE and the mixture of these materials with gelatin as coating material. The purpose of this research was to produce and characterize these microcapsules. The capsules’ efficiency, surface content, moisture, morphology, solubility, particle size and glass transition temperature were analysed. The hydrolysed pinhão starch 12 DE showed the highest total β‐carotene content and the lowest surface β‐carotene content, unlike the native starch. Using scanning electron microscopy, it was observed that all microcapsules presented undefined shapes. The samples with gelatin had wider particle size distribution, higher diameters, lower solubility and higher glass transition temperature when compared with other the samples. Results obtained suggest that the modified pinhão starch can be considered as potential wall material for encapsulation of β‐carotene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号