首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
模糊C均值聚类算法(FCM)是一种流行的聚类算法,在许多工程领域有着广泛的应用.密度加权的模糊C均值算法(Density Weighted FCM)是对传统FCM的一种改进,它可以很好的解决FCM对噪声敏感的问题.但是DWFCM与FCM都没有解决聚类结果很大程度上依赖初始聚类中心的选择好坏的问题.提出一种基于最近邻居节点对密度的FCM改进算法Improved-DWFCM,通过最近邻居节点估计节点密度的方法解决聚类结果对初始簇中心依赖的问题.仿真结果表明这种算法选择出来的初始聚类中心与最终结果的簇中心非常接近,大大提高了算法收敛的速度以及聚类的效果.  相似文献   

2.
一种基于特征加权的蚁群聚类新算法   总被引:2,自引:1,他引:2  
蚁群聚类算法作为一种群体智能的算法已经被证实可用于高维数据的聚类,能够快速有效地处理Web的海量、高维数据,但是传统的蚁群聚类算法并未考虑各维特征的贡献率,聚类的准确度有限。文中以优化聚类效果为目标,提出了一种基于特征加权的蚁群聚类新算法FWACCA,在新算法中考虑了各维特征对分类贡献的多少,合理地使用了Sigmoid概率转换函数和主客观结合的赋权法。实验结果表明此新算法可以有效减少聚类出错率,提高聚类的准确性。  相似文献   

3.
IncSNN——一种基于密度的增量聚类算法   总被引:1,自引:0,他引:1  
基于密度的聚类算法是一类重要的聚类算法,能发现任意形状的簇,但由于它的时间复杂度较高,因此设计有效的增量更新算法是一个重要研究方向.在SNN算法的基础上,提出一种基于密度的增量聚类算法-IncSNN.该算法将所更新对象的空间进行划分,定义了基于该划分的最近邻居的概念,进而确定了受影响对象的集合,当算法更新时,只需要对受影响的数据进行处理.由于受影响对象的集合远小于原数据集合,因此显著提高了算法的效率.实验结果验证了IncSNN的有效性.  相似文献   

4.
传统的聚类融合方法通过融合所有成员实现融合,无法彻底消除劣质聚类成员对融合质量的影响,而从聚类成员的选择和加权两方面进行聚类融合,即先采用两两融合技术代替融合所有聚类结果进行聚类成员选择,然后进行基于属性的聚类成员加权,在理论上具有更好优越性。通过对真实数据和模拟数据的实验发现,该算法能有效处理聚类成员的质量差异,比传统聚类融合能得到更好的聚类结果,具有较好可扩展性。  相似文献   

5.
一种基于网格和密度的数据流聚类算法   总被引:1,自引:0,他引:1  
在"数据流分析"这一数据挖掘的应用领域中,常规的算法显得很不适用.主要是因为这些算法的挖掘过程不能适应数据流的动态环境,其挖掘模型、挖掘结果不能满足实际应用中用户的需求.针对这一问题,本文提出了一种基于网格和密度的聚类方法,来有效地完成对数据流的分析任务.该方法打破传统聚类方法的束缚,把整个挖掘过程分为离线和在线两步,最终通过基于网格和密度的聚类方法实现数据流聚类.  相似文献   

6.
针对BFSN算法需要人工输入参数r和λ的缺陷,提出了一种自适应确定r和λ的SA-BFSN聚类方法。该方法通过Inverse Gaussian拟合判断r参数,通过分析噪声点数量的分布特征选择合适的λ值。算法测试表明,使用SA-BFSN无需人工输入参数,能够实现聚类过程的全自动化,能够有效处理任意形状、大小和密度的簇。  相似文献   

7.
一种基于密度的空间数据流在线聚类算法   总被引:2,自引:0,他引:2       下载免费PDF全文
于彦伟  王沁  邝俊  何杰 《自动化学报》2012,38(6):1051-1059
为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial datastream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033 ms.  相似文献   

8.
VDBSCAN:变密度聚类算法   总被引:5,自引:0,他引:5       下载免费PDF全文
传统的密度聚类算法不能识别并聚类多个不同密度的簇。对此提出了变密度聚类算法VDBSCAN,针对密度不稳定的数据集,可有效识别并同时聚类不同密度的簇,避免合并和遗漏。VDBSCAN算法的基本思想是:根据k-dist图和DK分析,对数据集中的不同密度层次自动选择一组Eps值,分别调用DBSCAN算法。不同的Eps值,能够找到不同密度的簇。4个二维数据集实验验证了VDB-SCAN算法的有效性,表明VDBSCAN算法可以有效地聚类密度不均匀的数据集,且参数Eps的自动选择方法也是有效的和健壮的。  相似文献   

9.
针对基于密度的空间聚类及其变种提出了拓扑的概念。给出了聚类拓扑结构的定义,把簇定义为多种拓扑连通集合。此外,运用全新的拓扑思想改进典型的算法,提出了一种拓扑聚类的新算法。实例证明此算法有效。  相似文献   

10.
一种处理障碍约束的基于密度的空间聚类算法   总被引:1,自引:0,他引:1  
杨杨  孙志伟  赵政 《计算机应用》2007,27(7):1688-1691
在现有的基于障碍约束的空间聚类算法COD_CLARANS、DBCLuC、AUTOCLUST+和DBRS+的基础上,提出了一种新的基于密度的空间聚类算法——基于障碍距离的密度聚类算法(DBCOD)。该算法在DBCLuC算法的基础上,采用障碍距离代替欧几里得距离作为相异度的度量标准,并在预处理过程中用障碍多边形合并化简方法来提高障碍物的处理效率。仿真实验结果表明,DBCOD算法不仅具有密度聚类算法的优点,而且聚类结果比传统基于障碍约束的密度聚类算法更合理、更加符合实际情况。  相似文献   

11.
不平衡数据集类别分布严重倾斜,传统的聚类算法由于以提高整体学习性能为目标,往往偏向于聚集多数类,而忽视更有价值的稀有类.本文提出一种基于迭代的特征加权聚类算法,根据当前聚类后簇的特点以及特征重要性度量函数确定特征权值,利用所得权值进行下一轮聚类,直到权值稳定后结束迭代.在多个UCI不平衡数据集上的实验效果表明,本文算法能够较好地识别出重要特征并提高它们的权重,避免聚类算法过度偏向多数类,有效地提高了聚类性能.  相似文献   

12.
在分析了现有的基于密度的聚类算法的基础上,结合微粒群算法,提出了一种基于密度的微粒群混合聚类算法。相对于DENCLUE聚类算法,该算法能够对使用的资源进行有效的控制,有利于实现对数据库数据的增量处理。实验证明了算法的有效性。  相似文献   

13.
本文参照在自动分类问题中一种常见的基于Kullback-Leibler距离的特征聚类算法,针对其特征压缩造成的性能损失而导致分类性能下降的问题提出了改进,结合模糊数学的思想,提出了一种基于特征模糊相关的特征聚类算法FFC,最后在本文的一个应用系统AGENT上给出实验数据,并比较了两种算法的差异.  相似文献   

14.
模糊C-均值(FCM)算法是一种非监督的模式识别方法。由于该算法具有对数据集进行等划分的趋势,影响其聚类精度。利用数据点的密度大小作为权值,借助数据本身的分布特性,提出了一种点密度加权模糊C-均值算法。该方法不仅在一定程度上克服了FCM算法的缺陷,而且具有良好的收敛性。当以聚类已知的少量数据点作为监督信息指导聚类,聚类效果进一步改善。并用聚类有效性函数对算法的聚类有效性进行了评价,从而为算法的聚类性能提供了理论依据。  相似文献   

15.
一种改进的基于特征赋权的K均值聚类算法   总被引:2,自引:0,他引:2  
聚类分析是数据挖掘及机器学习领域内的重点问题之一。近年来,为了提高聚类质量,借鉴和引入了分类领域特征选择及特征赋权思想,提出了一些基于特征赋权的聚类算法。在这些研究基础上,本文提出了一种基于密度的初始中心点选择算法,并借鉴文[1]所提出的特征赋权方法,给出了一种改进的基于特征赋权的K均值算法。实验表明该算法能较为稳定地得到较高质量的聚类结果。  相似文献   

16.
一种基于密度的加权模糊均值聚类算法   总被引:1,自引:0,他引:1  
针对当数据集合中的数据属性差异不明显时,传统的均值聚类算法会收敛到局部最小值点,造成算法聚类结果不准、精度下降的问题,提出了一种基于密度的加权模糊均值聚类算法。该算法通过计算差异属性类中的相关密度,运用密度作为确定初始类中心的方法,得到了聚类效果更好的初始值。之后用加权模糊算法克服类划分中数据属性差异不明显带来的弊端,对类中差异属性进行归类划分。实验结果表明,该算法依然可以区分出不同属性的重要程度,而且其稳定性和聚类效果都有一定的提高。  相似文献   

17.
提出一种基于小生境混合遗传算法的文本特征词聚类方法.该方法首先采用贝叶斯语义模型对语料库进行统计分析,并以K-L距离度量特征词间的距离,然后将小生境遗传算法与K-Means算法相结合,对文本特征词进行聚类,为文本特征词聚类提供了较高的效率和精确度.实验表明该方法是一种高效可行的文本特征词聚类方法.  相似文献   

18.
一种基于加权复杂网络特征的K-means聚类算法   总被引:1,自引:0,他引:1  
在分析了传统的基于划分的K—means聚类算法的优越性和存在不足的基础上,根据近两年复杂网络研究中部分新的理论成果,提出了复杂网络加权度、加权聚集度与加权聚集系数的定义,并将数据聚类转换为复杂网络上的节点聚类,提出基于加权复杂网络特征的K—means聚类算法(简称WCNFC算法)。实验结果表明,该算法根据节点加权复杂网络特征值,能够较好地找到聚类中心,有效地避免了对初始化选值敏感性的问题,从而使得聚类质量大大提高。  相似文献   

19.
在分析了传统的基于划分的K-means聚类算法的优越性和存在不足的基础上,根据近两年复杂网络研究中部分新的理论成果,提出了复杂网络加权度、加权聚集度与加权聚集系数的定义,并将数据聚类转换为复杂网络上的节点聚类,提出基于加权复杂网络特征的K-means聚类算法(简称WCNFC算法)。实验结果表明,该算法根据节点加权复杂网络特征值,能够较好地找到聚类中心,有效地避免了对初始化选值敏感性的问题,从而使得聚类质量大大提高。  相似文献   

20.
半监督加权模糊C均值聚类算法   总被引:1,自引:1,他引:1       下载免费PDF全文
江秀勤 《计算机工程》2009,35(17):170-171
对于团状、每类样本数相差较大的数据集,FCM算法和半监督模糊C均值聚类算法都不是最佳聚类方法,因为它们对数据集有等划分趋势。针对这种情况,利用样本点分布密度大小作为权值,结合半监督学习方法,提出半监督点密度加权模糊C均值聚类算法。在半监督学习过程中,对于求极值的问题采用模拟退火算法。结果证明,点密度加权模糊C均值聚类算法确实能提高聚类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号