首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sukkee Um 《Fuel》2010,89(7):1415-1386
This paper describes a modeling study on the effects of the mixing ratio of biodiesel derived from rice on combustion and emission characteristics. In order to model ignition and combustion processes, a combined mechanism of methyl butanoate and n-heptane was used after modifying some reaction constants. The oxygen content of rice oil was maintained at the measured value (11 vol.%) by assuming that one mole of rice oil was composed of one mole of methyl butanoate and two moles of n-heptane. The fuel property library of the KIVA code was expanded to include physical properties such as density and surface tension of rice oil (i.e., biodiesel). In addition, a discrete multi-component fuel evaporation model was employed to model the fuel injection, atomization, and evaporation.Calculated pressure histories and carbon monoxide (CO) and hydrocarbon (HC) emissions of the present study agreed reasonably with experiments at a 100 MPa injection pressure and a 10° BTDC injection timing for D100, BD20, and BD40. However some discrepancies were observed in predicting nitrogen oxide (NOx) emissions. The effect of the start of injection timing on fuel consumption and CO emissions were also studied.  相似文献   

2.
《Fuel》2007,86(7-8):1139-1143
In this study, biodiesel fuel and fuel additives were produced from crude tall oil that is a by-product in the pulp manufacturing by craft or sulphate pulping process. Fatty acids and resinic acids were obtained from crude tall oil by distillation method. Tall oil methyl ester (biodiesel) was produced from fatty acids. Resinic acids were reacted with NiO and MnO2 stoichiometrically for production of metallic fuel additives. Each metallic fuel additive was added at the rate of 8 μmol/l and 12 μmol/l to make mixtures of 60% tall oil methyl ester/40% diesel fuel (TE60) for preparing test fuels. Metallic fuel additives improved properties of biodiesel fuels, such as pour point and viscosity values. Biodiesel fuels were tested in an unmodified direct injection diesel engine at full load condition. Specific fuel consumption of biodiesel fuels increased by 6.00%, however, in comparison with TE60, it showed trend of decreasing with adding of additives. Exhaust emission profile of biodiesel fuels improved. CO emissions and smoke opacity decreased up to 64.28% and 30.91% respectively. Low NOx emission was also observed in general for the biodiesel fuels.  相似文献   

3.
《Fuel Processing Technology》2005,86(10):1109-1126
In this paper, we explore the efficacy of (1) reducing the iodine value of soy-derived biodiesel fuels through increasing the methyl oleate (methyl ester of oleic acid) content and (2) addition of cetane improvers, as strategies to combat the biodiesel NOx effect: the increase in NOx emissions observed in most studies of biodiesel and biodiesel blends. This is accomplished by spiking a conventional soy-derived biodiesel fuel with methyl oleate or with cetane improver. The impact on bulk modulus of compressibility, fuel injection timing, cetane number, combustion, and emissions were examined. The conventional B20 blend produced a NOx increase of 3–5% relative to petroleum diesel, depending on injection timing. However, by using a B20 blend where the biodiesel portion contained 76% methyl oleate, the biodiesel NOx effect was eliminated and a NOx neutral blend was produced. The bulk modulus of petroleum diesel was measured to be 2% lower than B20, yielding a shift in fuel injection timing of 0.1–0.3 crank angle. The bulk modulus of the high methyl oleate B20 blend was measured to be 0.5% lower than B20, not enough to have a measurable impact on fuel injection timing. Increasing the methyl oleate portion of the biodiesel to 76% also had the effect of increasing the cetane number from 48.2 for conventional B20 to 50.4, but this effect is small compared to the increase to 53.5 achieved by adding 1000 ppm of 2-ethylhexyl nitrate (EHN) to B20. For the particular engine tested, NOx emissions were found to be insensitive to ignition delay, maximum cylinder temperature, and maximum rate of heat release. The dominant effect on NOx emissions was the timing of the combustion process, initiated by the start of injection, and propagated through the timing of maximum heat release rate and maximum temperature.  相似文献   

4.
Experiments were conducted to study the performance, emission and combustion characteristics of a DI diesel engine using poon oil-based fuels. In the present work, poon oil and poon oil methyl ester are tested as diesel fuels in Neat and blended forms. The blends were prepared with 20% poon oil and 40% poon oil methyl ester separately with standard diesel on a volume basis. The reductions in smoke, hydrocarbon and CO emissions were observed for poon oil methyl ester and its diesel blend along with increased NOx emission compared to those of standard diesel. However, a reduction in NOx emission and an increase in smoke, hydrocarbon and CO emissions were observed for Neat poon oil and its diesel blend compared to those of standard diesel. The 40% poon oil methyl ester blend showed a 2% increase in brake thermal efficiency compared to that of standard diesel, whereas other fuels tested showed a decreasing trend. From the combustion analysis it was found that ignition delay was shorter for all fuels tested compared to that of standard diesel. The combustion characteristics of poon oil methyl ester and its diesel blend closely followed those of standard diesel.  相似文献   

5.
The kinetics of n-butane oxidation to maleic anhydride over a commercial V-P-O catalyst for fluid bed reactors was investigated systematically and modelled according to a scheme of eight reactions, involving also the combustion of both n-butane and maleic anhydride to CO and CO2, as well as the formation and the combustion of acetic and acrylic acids. A one-dimensional, heterogeneous (two-phase) fluid bed reactor model incorporating the independently derived kinetic scheme was successfully validated on a predictive basis against conversion, selectivity and steam production data collected in a full-scale MA production plant.  相似文献   

6.
Bai-Fu Lin  Dao-Yi Huang 《Fuel》2009,88(9):1779-1785
Vegetable oil methyl ester (VOME) is produced through the transesterification of vegetable oil and can be used as biodiesel in diesel engines as a renewable, nontoxic, and potentially environmentally friendly fossil fuel alternative in light of growing concerns regarding global warming and increasing oil prices. This study used VOME fuels produced from eight commonly seen oil bases to conduct a series of engine tests to investigate the effects of VOME on the engine performance, exhaust emissions, and combustion characteristics. The experimental results showed that using VOME in an unmodified direct injection (DI) diesel engine yielded a higher brake specific fuel consumption (BSFC) due to the VOME fuel’s lower calorific value. The high cetane number of VOME also imparted a better ignition quality and the high intrinsic oxygen content advanced the combustion process. The earlier start of combustion and the rapid combustion rate led to a drastic increase in the heat release rate (HRR) and the in-cylinder combustion pressure (ICCP) during the premixed combustion phase. A higher combustion rate resulted in higher peaks of HRR and ICCP as well as near the top dead center (TDC) position. Thus, it was found that a diesel engine fueled with VOME could potentially produce the same engine power as one fueled with petroleum diesel (PD), but with a reduction in the exhaust gas temperature (EGT), smoke and total hydrocarbon (THC) emissions, albeit with a slight increase in nitrogen oxides (NOx) emissions. In addition, the VOME which possesses shorter carbon chains, more saturated bonds, and a higher oxygen content also yields a lower EGT as well as reduced smoke, NOx, and THC emissions. However, this is obtained at the detriment of an increased BSFC.  相似文献   

7.
The effect of mixture composition, total pressure and catalyst temperature on the kinetics of the catalytic combustion of n-butane/air or n-butane/oxygen mixtures on isothermally heated platinum wire is reported. The catalyst temperature was changed from 680 to 1,130 K for mixtures containing n-butane between 1 and 4.5% at total pressures between 10 and 100 kPa. The measurements allowed the determination of different kinetic properties like reaction rate, turnover frequency, overall and partial reaction orders and activation energy. The pressure dependence of the reaction rate offered the possibility to make a critical analysis of the kinetic equations frequently utilized in the literature.  相似文献   

8.
Seth R. Hoffman 《Fuel》2009,88(6):1099-1108
Combustion characteristics of n-heptane, a surrogate for hydrocarbon diesel, methyl decanoate, a surrogate for biodiesel, and dimethyl ether, a fuel that can be derived from bio-feedstocks, are investigated with a homogeneous constant-pressure reactor model and a homogeneous-charge compression-ignition engine thermodynamic simulation model, with focus on two variables: ignition delay and NO formation, under conditions of varying oxygen concentration. Negative temperature coefficient (NTC) behavior is observed for the three fuels. Reducing oxygen concentration increases ignition delay for all fuels. The results and conclusions with the two models differ because it is necessary to vary initial conditions in the engine model to optimize combustion phasing and maximize indicated efficiency.  相似文献   

9.
This study discusses the performance and combustion characteristics of a direct injection (DI) diesel engine fueled with biodiesels such as waste (frying) palm oil methyl ester (WPOME) and canola oil methyl ester (COME). In order to determine the performance and combustion characteristics, the experiments were conducted at the constant engine speed mode (1500 rpm) under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME, the engine performance slightly weakened; the combustion characteristics slightly changed when compared to petroleum based diesel fuel (PBDF). The biodiesels caused reductions in carbon monoxide (CO), unburned hydrocarbon (HC) emissions and smoke opacity, but they caused to increases in nitrogen oxides (NOx) emissions.  相似文献   

10.
Marco Drache  Michael Buback 《Polymer》2005,46(19):8483-8493
Cumyl dithiobenzoate (CDB) mediated methyl acrylate (MA) bulk polymerizations at 80 °C, using CDB concentrations between 1.5×10−2 and 5.0×10−2 mol L−1, were modeled via a novel Monte Carlo simulation procedure with respect to experimental time-dependent conversions, X, number average molecular weights, Mn, and weight average molecular weights, Mw. The simulations were based upon individual treatment of 5×108 discrete molecules in accordance to their actual reaction pathways. The kinetic scheme employed includes termination reactions of intermediate RAFT radicals with propagating radicals and reaction steps of the RAFT pre-equilibrium, which are different from those of the RAFT main equilibrium. The equilibrium constant of the main equilibrium of the CDB/MA system at 80 °C was found to be K=1.2×104 L mol−1, indicating a relatively stable intermediate radical. The concentration of the intermediate RAFT radical, although not employed as experimental input data for the modeling, was calculated by using the obtained set of kinetic parameters as being in excellent agreement with experimental electron spin resonance spectroscopic data.  相似文献   

11.
This paper presents experimental results of rapeseed methyl ester (RME) and diesel fuel used separately as pilot fuels for dual-fuel compression-ignition (CI) engine operation with hydrogen gas and natural gas (the two gaseous fuels are tested separately). During hydrogen dual-fuel operation with both pilot fuels, thermal efficiencies are generally maintained. Hydrogen dual-fuel CI engine operation with both pilot fuels increases NOx emissions, while smoke, unburnt HC and CO levels remain relatively unchanged compared with normal CI engine operation. During hydrogen dual-fuel operation with both pilot fuels, high flame propagation speeds in addition to slightly increased ignition delay result in higher pressure-rise rates, increased emissions of NOx and peak pressure values compared with normal CI engine operation. During natural gas dual-fuel operation with both pilot fuels, comparatively higher unburnt HC and CO emissions are recorded compared with normal CI engine operation at low and intermediate engine loads which are due to lower combustion efficiencies and correspond to lower thermal efficiencies. This could be due to the pilot fuel failing to ignite the natural gas-air charge on a significant scale. During dual-fuel operation with both gaseous fuels, an increased overall hydrogen-carbon ratio lowers CO2 emissions compared with normal engine operation. Power output (in terms of brake mean effective pressure, BMEP) as well as maximum engine speed achieved are also limited. This results from a reduced gaseous fuel induction capability in the intake manifold, in addition to engine stability issues (i.e. abnormal combustion). During all engine operating modes, diesel pilot fuel and RME pilot fuel performed closely in terms of exhaust emissions. Overall, CI engines can operate in the dual-fuel mode reasonably successfully with minimal modifications. However, increased NOx emissions (with hydrogen use) and incomplete combustion at low and intermediate loads (with natural gas use) are concerns; while port gaseous fuel induction limits power output at high speeds.  相似文献   

12.
K. Varatharajan  M. Cheralathan 《Fuel》2011,90(8):2721-2725
Biodiesel offers cleaner combustion over conventional diesel fuel including reduced particulate matter, carbon monoxide and unburned hydrocarbon emissions. However, several studies point to slight increase in NOx emissions (about 10%) for biodiesel fuel compared with conventional diesel fuel. Use of antioxidant additives is one of the most cost-effective ways to mitigate the formation of prompt NOx. In this study, the effect of antioxidant additives on NOx emissions in a jatropha methyl ester fuelled direct injection diesel engine have been investigated experimentally and compared. A survey of literature regarding the causes of biodiesel NOx effect and control strategies is presented. The antioxidant additives L-ascorbic acid, α tocopherol acetate, butylated hydroxytoluene, p-phenylenediamine and ethylenediamine were tested on computerised Kirloskar-make 4 stroke water cooled single cylinder diesel engine of 4.4 kW rated power. Results showed that antioxidants considered in the present study are effective in controlling the NOx emissions of biodiesel fuelled diesel engines. A 0.025%-m concentration of p-phenylenediamine additive was optimal as NOx levels were substantially reduced in the whole load range in comparison with neat biodiesel. However, hydrocarbon and CO emissions were found to have increased by the addition of antioxidants.  相似文献   

13.
To extract meaningful information from complex kinetic models involving a large number of species and reactions, advanced computational techniques are required. In this work, new approaches have been proposed based on element flux calculations for systematic kinetic analysis of complex reaction models. These approaches quantify element transformation flux between species to determine a metric that accurately captures the production and consumption of species. Furthermore, a graph searching procedure is employed to retrieve all possible reaction pathways from the highly complex reaction networks. Element fluxes involved in these pathways provide an indicator to quantitatively evaluate pathway activities. Based on pathway activities, a novel approach is proposed to project the totality of the information contained in pathway weights onto a single scalar, reactivity status indicator, which enables a compact representation of local chemistry. The proposed approaches are illustrated with highly complex kinetic mechanisms describing oxidation of n‐pentane, n‐heptane, and a biodiesel surrogate methyl‐butanoate. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

14.
M. Gumus 《Fuel》2010,89(10):2802-2814
In the present study, hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain biodiesel and a comprehensive experimental investigation of combustion (cylinder gas pressure, rate of pressure rise, ignition delay) and heat release (rate of heat release, cumulative heat release, combustion duration and center of heat release) parameters of a direct injection compression ignition engine running with biodiesel and its blends with diesel fuel was carried out. Experiment parameters included the percentage of biodiesel in the blend, engine load, injection timing, injection pressure, and compression ratio. Results showed that hazelnut kernel oil methyl ester and its blends with diesel fuel can be used in the engine without any modification and undesirable combustion and heat release characteristics were not observed. The modifications such as increasing of injection timing, compression ratio, and injection pressure provided significant improvement in combustion and heat release characteristics.  相似文献   

15.
Biodiesel is a renewable, domestically produced fuel that has been shown to reduce particulate, hydrocarbon, and carbon monoxide emissions from diesel engines. Under some conditions, however, biodiesel produced from certain feedstocks has been shown to cause an increase in nitrogen oxides (NOx). This is of special concern in urban areas that are subject to strict environmental regulations. Although soy-based biodiesel may increase the emission of nitrogen oxides, it is the most easily accessible in North America. We investigated two routes to reformulate soy-based biodiesel in an effort to reduce nitrogen oxide emissions. In one of these, soy-oil methyl esters were modified by conversion of a proportion of the cis bonds in the fatty acid chains of its methyl esters to their trans isomers. In the other approach, polyol derivatives of soybean oil were transesterified to form soy methyl polyol fatty acid esters. The NOx emissions of these modified biodiesels were then examined, using a Yanmar L100 single cylinder, four stroke, naturally aspirated, air cooled, direct injection diesel engine. Using either isomerized methyl oleate or isomerized soy biodiesel, at 20% blend level in petroleum diesel (‘B20’), nitrogen oxide emissions were elevated by between 1.5 and 3 percentage points relative to the combustion of a B20 blend of commercial biodiesel. Nitrogen oxide emissions were reduced in proportion to blend level during the combustion of polyol biodiesel, with a 20% blend in petrodiesel resulting in a reduction of about 4.5 percentage points relative to the emissions of a comparable blend of commercial soy biodiesel.  相似文献   

16.
This paper intends to investigate combustion of petrodiesel and biodiesels of grape seed, corn, sunflower, soybean, olive and rice bran oils, which were produced through an alkali-based transesterification, in a non-pressurized, water-cooled combustion chamber by determining its combustion performance and gas emissions (CO, CO2, NOx, SO2). First, the influence of fuel pressure which related to the rate of sprayed fuel to the chamber was studied in order to find out an optimum combustion pressure. In the next level, the influence of A/F upon emissions and boiler performances at 13.79 bars was studied. Results show that similar combustion of fuels occurred at 13.79 bars (optimum) where due to the increase in fuel pressure, the effect of viscous forces in flame formation disappeared. Complete combustion of fuels occurred at 19.305 bars where the CO emissions of all the fuels reached to zero.The overall performance of the boiler obtained with the methyl esters and petrodiesel are comparable for the defined operating points (especially at high energy rates and low A/F). All the six kinds of vegetable based methyl ester emitted lower emissions than petrodiesel over the wide fuel pressures, and A/F. Meanwhile, biodiesels emitted higher amounts of NOx than petrodiesel. Biodiesels also emitted higher amounts of CO than petrodiesel at low fuel pressures when the viscous forces interfered with proper distributions of fuels to the combustion chamber.  相似文献   

17.
The cetane number, a widely used diesel fuel quality parameter related to the ignition delay time (and combustion quality) of a fuel, has been applied to alternative diesel fuels such as biodiesel and its components. In this work, the cetane numbers of 29 samples of straight-chain and branched C1-C4 esters as well as 2-ethylhexyl esters of various common fatty acids were determined. The cetane numbers of these esters are not significantly affected by branching in the alcohol moiety. Therefore, branched esters, which improve the cold-flow properties of biodiesel, can be employed without greatly influencing ignition properties compared to the more common methyl esters. Unsaturation in the fatty acid chain was again the most significant factor causing lower cetane numbers. Cetane numbers were determined in an ignition quality tester (IQT) which is a newly developed, automated rapid method using only small amounts of material. The IQT is as applicable to biodiesel and its components as previous cetane-testing methods.  相似文献   

18.
Termination of poly(methyl acrylate) radicals in benzene solution has been studied by polymerization of the monomer using [14C] azoisobutyronitrile as initiator. When polymerizations were initiated thermally at 60° and 45°C values for the number of initiator fragments per polymer molecule, n, were substantially less than 2 but were dependent upon the rate of initiation, Rj. As Rj was increased n increased, indicating that chain transfer reactions were important. By correcting n for chain transfer it was shown that the polymer radicals most probably terminated by combination. The results at 25°C were more conclusive. With higher rates of photochemical initiation chain transfer reactions became unimportant, values of n were close to 2 and polymer radicals terminated almost exclusively by combination.  相似文献   

19.
《Fuel》2007,86(12-13):1772-1780
In this study, wasted cooking oil from restaurants was used to produce neat (pure) biodiesel through transesterification, and this converted biodiesel was then used to prepare biodiesel/diesel blends. The goal of this study was to compare the trace formation from the exhaust tail gas of a diesel engine when operated using the different fuel type: neat biodiesel, biodiesel/diesel blends, and normal diesel fuels. B20 produced the lowest CO concentration for all engine speeds. B50 produced higher CO2 than other fuels for all engine speeds, except at 2000 rpm where B20 gave the highest. The biodiesel and biodiesel/diesel blend fuels produced higher NOx for various engine speeds as expected. SO2 formation not only showed an increasing trend with increased engine speed but also showed an increasing trend as the percentage of diesel increased in the fuels. Among the collected data, the PM concentrations from B100 engines were higher than from other fuelled engines for the tested engine speed and most biodiesel-contained fuels produced higher PM than the pure diesel fuel did. Overall, we may conclude that B20 and B50 are the optimum fuel blends. The species of trace formation in the biodiesel-contained fuelled engine exhaust were mainly CnH2n+2, DEP, and DPS. For the B100, B80, B50, and D fuelled engines, C15H32 was the dominant species for all engine speeds, while squalene (C30H50) was the dominant for B20. DEP was only observed in the B100, B80, and B50 fuelled engines in this study. The D fuelled engine showed a higher DPS production for engine speeds higher than 1200 rpm.  相似文献   

20.
Waste anchovy fish oils transesterification was studied with the purpose of achieving the conditions for biodiesel usage in a single cylinder, direct injection compression ignition. With this purpose, the pure biodiesel produced from anchovy fish oil, biodiesel-diesel fuel blends of 25%:75% biodiesel-diesel (B25), 50%:50% biodiesel-diesel (B50), 75%:25% biodiesel-diesel (B75) and petroleum diesel fuels were used in the engine to specify how the engine performance and exhaust emission parameters changed. The fuel properties of test fuels were analyzed. Tests were performed at full load engine operation with variable speeds of 1000, 1500, 2000 and 2500 rpm engine speeds. As results of investigations on comparison of fuels with each other, there has been a decrease with 4.14% in fish oil methyl ester (FOME) and its blends' engine torque, averagely 5.16% reduction in engine power, while 4.96% increase in specific fuel consumption have been observed. On one hand there has been average reduction as 4.576%, 21.3%, 33.42% in CO2, CO, HC, respectively; on the other hand, there has been increase as 9.63%, 29.37% and 7.54% in O2, NOx and exhaust gas temperature has been observed. It was also found that biodiesel from anchovy fish oil contains 37.93 wt.% saturated fatty acids which helps to improve cetane number and lower NOx emissions. Besides, for biodiesel and its blends, average smoke opacity was reduces about 16% in comparison to D2. It can be concluded that waste anchovy fish obtained from biodiesel can be used as a substitute for petroleum diesel in diesel engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号