首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main goal of the study presented in the paper was to experimentally demonstrate the feasibility of lignite gasification to hydrogen-rich gas under the underground conditions simulated in the ex situ reactor. The in situ gasification conditions were simulated both in respect to the coal seam and the surrounding stratum. In the 54-h experiment the process of lignite gasification with oxygen and steam as gasifying medium was tested. The experiment was initially divided into three stages: the ignition stage, the oxygen stage and the steam stage.The gas produced in the steam gasification stage was characterized by the calorific value of 7.8 MJ/m3 and average hydrogen content of 46.3 vol.%. Unfortunately a rapid decrease in the temperature levels and in the amount of produced gas proved that the tested lignite of 53 vol.% moisture content was not suitable for steam gasification. A great amount of thermal energy was consumed for water evaporation which led to a considerable heat loss. An addition of stoichiometric amount of water in the system by adding steam caused the seam to extinguish. Thus only oxygen could be used as the gasifying medium in the gasification of the tested lignite. The average calorific value of gas produced in the stable operation during oxygen gasification stage equaled 5.2 MJ/m3 with the average gas production rate of 16.0 m3/h and the average hydrogen content in the produced gas of 26.4 vol.%.  相似文献   

2.
《Fuel》2007,86(1-2):194-202
Experimental investigations of the influence of excess oxygen coefficient, H2O/coal mass ratio using high-temperature steam, mean mass diameter of pulverized coal and coal size fraction on basic characteristics of coal gasification were performed. Experiments were carried out on a laboratory scale (0.09 m i.d. × 1.5 m high) coal gasification apparatus with lignite type of coal. Influence of steam was realized through comparison of results obtained from experiments with (H2O/coal = 0.287 kg kg−1) and without steam addition (H2O/coal = 0.024 kg kg−1). High values of carbon conversion, obtained both for finely ground and for coarse pulverized coal points to the easiness of lignite gasification, i.e. to its high suitability for gasification.  相似文献   

3.
A coal gasification process using a molten iron bath as reactor has been developed by Sumitomo Metals. Pulverized coal is blown onto this molten iron together with oxygen and steam as gasification agents. Tests using a pilot plant having a capacity of 60 t (coal) day?1, has shown that a sulphur-free carbon monoxide and hydrogen-rich gas can be generated at high coal conversion efficiency.  相似文献   

4.
《Fuel》2006,85(7-8):1143-1150
Integration of coal gasification and CO2 separation reactions in one reactor may produce a high concentration of hydrogen. To design a reactor for this new reaction system, it is necessary to know all reaction behaviors in the integrated reaction system. In our previous study, we performed a continuous reaction experiment of coal/CaO under high steam pressure and confirmed that H2 concentration higher than 80 vol% with little CH4 was produced; and that almost all CO2 was fixed by adding CaO. In this study, the behaviors of solid products during the continuous experiment were investigated. It was found that, CaO first reacted with high-pressure steam to form Ca(OH)2 (hydration), then the Ca(OH)2 absorbed the CO2 generated by coal gasification to form CaCO3. The hydration of CaO restored sorbent reactivity. Eutectic melting of Ca(OH)2/CaCO3 was found to occur in the experiment at 973 K, and this eutectic melting led to the growth of large particles of solid materials. However, at the relatively low temperature of 923 K, eutectic melting could be avoided. Carbon conversion of the coal in the continuous reaction of the coal/CaO mixture with steam was high as 60–80%, even at the lower temperature of 923 K.  相似文献   

5.
The main goal of the study presented in the paper was an experimental comparison of the underground lignite and hard coal seams air gasification simulated in the ex situ reactor. In the study lignite and hard coal were gasified with oxygen, air and oxygen enriched air as gasification agents in the 50- and 30-h experiments, respectively, with an intrinsic coal and strata moisture content as a steam source. Application of air as a sole gasification agent was problematic for a resulting rapid decrease in temperatures, deterioration of gas quality and, finally, cessation of gasification reactions. Use of oxygen/air mixture of an optimum ratio led to valuable gas production. In lignite seam gasification with oxygen/air (of 4:2 volume ratio) the average H2 and CO contents in product gas were 23.1 vol.% and 6.3 vol.%, respectively, and the calorific value was 4.18 MJ/m3, whereas in hard coal gasification with the oxygen/air ratio (of 2:3 volume ratio) the average H2 and CO contents in produced gas were 18.7 vol.% and 17.3 vol.%, respectively, and product gas calorific value equaled 5.74 MJ/m3.  相似文献   

6.
HyperCoal is an ultra clean coal with ash content <0.05 wt%. Catalytic steam gasification of HyperCoal was carried out with K2CO3 at 775–650 °C for production of H2 rich gas and synthesis gas. The catalytic gasification of HyperCoal showed nearly four times higher gasification rate than raw coal. The major gases evolved were H2: 63 vol%, CO: 6 vol% and CO2: 30 vol%. Catalyst was recycled for four times without any significant rate loss. The partial pressure of steam was varied from 0.5 atm to 0.05 atm in order to investigate the effect of steam pressure on H2/CO ratio. The H2/CO ratio decreased from 9.5 at 0.5 atm to 1.9 at 0.05 atm. No significant decrease in gasification rate was observed due to change in partial pressure of steam. Gasification rate decreased with decreasing temperature and become very slow at 650 °C. The preliminary results showed that HyperCoal, an ash less coal, could be a potential hydrocarbon resource for H2 and synthesis gas production at low temperature by catalytic steam gasification process.  相似文献   

7.
《Fuel》2007,86(10-11):1631-1640
The advanced high efficiency cycles are all based on gas turbine technology, so coal gasification is the heart of the process. A 2 MWth spout-fluid bed gasifier has been constructed to study the partial gasification performance of a high ash Chinese coal. This paper presents the results of pilot plant partial gasification tests carried out at 0.5 MPa pressure and temperatures within the range of 950–980 °C in order to assess the technical feasibility of the raw gas and residual char generated from the gasifiier for use in the gas turbine based power plant. The results indicate that the gasification process at a higher temperature is better as far as carbon conversion, gas yield and cold gas efficiency are concerned. Increasing steam to coal ratio from 0.32 to 0.45 favors the water–gas and water–gas shift reactions that causes hydrogen content in the raw gas to rise. Coal gasification at a higher bed height shows advantages in gas quality, carbon conversion, gas yield and cold gas efficiency. The gas heating value data obtained from the deep-bed-height displays only 6–12% lower than the calculated value on the basis of Gibbs free energy minimization. The char residue shows high combustion reactivity and more than 99% combustion efficiency can be achieved.  相似文献   

8.
Decomposition of mono- to tetra-aromatics over charcoal was investigated under conditions such as temperature; 700–900 °C, inlet concentrations of aromatics, steam and H2; 7.5–15 g/Nm3, 0–15.5 vol% and 0–15.5 vol%, respectively, gas residence time within charcoal bed; 0.2 s, particle size of charcoal; 1.3–2.4 mm. The charcoal, with an initial surface area of 740 m2/g, was active enough to decompose naphthalene completely even at 750 °C. Aromatics with more rings per molecule were decomposed more rapidly. The aromatics were decomposed over the charcoal by coking rather than direct steam reforming irrespective of temperature and steam/H2 concentrations. The coking, i.e., carbon deposition from the aromatics, caused loss of micropores and thereby activity of the charcoal, while steam gasification of the charcoal/coke formed or regenerated micropores. Relationship between the overall rate of carbon deposition by the coking and gas formation by the gasification within the charcoal bed showed that progress of the gasification at a rate equivalent with or greater than that of the carbon deposition was necessary for maintaining the activity of the charcoal.  相似文献   

9.
《Fuel》2007,86(12-13):1947-1958
Chemical-looping combustion is a novel technique used for CO2 separation that previously has been demonstrated for gaseous fuel. This work demonstrates the feasibility of using solid fuel (petroleum coke) in chemical-looping combustion (CLC). Here, the reaction between the oxygen carrier and solid fuel occurs via the gasification intermediates, primarily CO and H2. A laboratory fluidized-bed reactor system for solid fuel, simulating a CLC-system by exposing oxygen-carrying particles to alternating reducing and oxidizing conditions, has been developed. In each reducing period, 0.2 g of petroleum coke was added to 20 g of oxygen carrier composed of 60% active material of Fe2O3 and 40% inert MgAl2O4. The effect of steam and SO2 concentration in the fluidizing gas was investigated as well as effect of temperature. The rate of reaction was found to be highly dependent on the steam and SO2 concentration as well as the temperature. Also shown was that the presence of a metal oxide enhances the gasification of petroleum coke. A preliminary estimation of the oxygen carrier inventory needed in a real CLC system showed that it would be below 2000 kg/MWth.  相似文献   

10.
Catalytic gasification of wood (Cedar) biomass was carried out using a specially designed flow-type double beds micro reactor in a two step process: temperature programmed non-catalytic steam gasification of biomass was performed in the first (top) bed at 200–850 °C followed by catalytic decomposition gasification of volatile matters (including tars) in the second (bottom) bed at a constant temperature, mainly 600 °C. Iron oxide catalysts, which transformed to Fe3O4 after use possessed catalytic activity in biomass tar decomposition. Above 90% of the volatile matters was gasified by the use of iron oxide catalyst (prepared from FeCl3 and NH3aq) at SV of 4.5 × 103 h?1. Tar was decomposed over the iron oxide catalysts followed by water gas shift reaction. Surface area of the iron oxide seemed to be an important factor for the catalytic tar decomposition. The activity of the iron oxide catalysts for tar decomposition seemed stable with cyclic use but the activity of the catalysts for the water gas shift reaction decreased with repeated use.  相似文献   

11.
In this paper we address the integration of a polygeneration system based on biomass with a concentrated solar power facility for the constant production of electricity over a year long. The process is modelled as a superstructure embedding two different gasification technologies, direct and indirect, and two reforming modes, partial oxidation or steam reforming followed by gas cleaning and three alternatives for the syngas use, water gas shift reactor (WGSR) to produce hydrogen, a furnace for thermal energy production and an open Brayton cycle. We couple this system with a concentrated solar plant that uses tower technology, molten salts and a regenerative Rankine cycle. The problem is formulated as a multi-period mixed-integer non linear programming problem (MINLP). The optimal integration involves the use of indirect gasification, steam reforming and a Brayton cycle to produce 340 MW of electricity at 0.073 €/kWh and 97 kt/yr of hydrogen as a credit.  相似文献   

12.
J.R. Bunt  J.P. Joubert  F.B. Waanders 《Fuel》2008,87(13-14):2849-2855
In the Sasol-Lurgi fixed-bed dry-bottom (FBDB) gasifier the temperature in the combustion zone should not exceed the melting point of the ash-forming minerals, causing them to melt/flow and agglomerate. Sintering of ash particles is considered desirable in Sasol-Lurgi FBDB gasification, since it promotes easy gas flow, whereas clinkering creates channeling and localized “hot spots”, leading to unstable gasifier operation. Due to the counter-current mode of operation, hot ash exchanges heat with the cold incoming agent (steam and oxygen), while at the same time hot raw gas exchanges heat with cold incoming coal. This results in the ash and raw gas leaving the gasifier at relatively low temperatures compared to other types of gasifiers, which improves the thermal efficiency and lowers the steam consumption.Vitrinite reflectance analyses were performed on a range of Sasol-Lurgi MK IV commercial-scale gasifier turn-out samples, applying ISO standards 7404-5. Average temperature profile measurements of the solid particles, successfully revealed the temperature range occurring within the various zones of the gasifier. The average (mean) temperature ranged from ca. 400 °C up to 850 °C within the pyrolysis region. In this region of the gasifier, the particle surface temperature and peak temperature showed visible evidence of heat transfer limitations occurring through lump coal when compared to the mean particle temperature. This provides some evidence of the complex radial and localized behaviour occurring within the averaged axial sample slices. In the oxidizing and combustion regimes, exothermic conditions prevail and heat transfer differences across the particles are minimized. A characteristic spike, indicative of an increase in temperature, was found in the sample taken directly above the ash-grate, seeming to indicate that agent distribution through the nozzles positioned just above the grate is not uniform, resulting in localized oxygen concentration increases with subsequent “hot-spots” and channel-burning occurring. Homogenization of the ash bed could help to optimize the agent distribution within the reactor.The surface temperature profile of the gasifier solids was thus found to be in reasonable agreement with literature, albeit that different coal types and temperature profile estimation methods were utilized.  相似文献   

13.
《Fuel》2007,86(1-2):32-40
Modelling approaches of biomass steam gasification are investigated that take into account both chemical and physical kinetic limitations. The gas phase can be described by two independent reactions: (i) the steam reforming of CH4, which is kinetically limited under the operating conditions (1073 < T < 1273 K, p = 1 bar), (ii) the water–gas shift reaction, which would be close to equilibrium under the operating conditions (1073 < T < 1273 K, p = 1 bar). Concerning solid, a time scale analysis of the main phenomena has been performed. For particles of 500 μm, the transformation can be seen as two successive steps: (i) pyrolysis of biomass, which is both chemically and heat-transfer controlled; (ii) steam gasification of residue, which is chemically controlled.  相似文献   

14.
Tie-feng Liu  Yi-tian Fang  Yang Wang 《Fuel》2008,87(4-5):460-466
The gasification activities of three kinds of Binxian chars with carbon dioxide were studied at 1000–1300 °C and under atmospheric pressure in self-made thermal balance. The specific surface area of coal or chars was determined with BET methods during gasification. The results showed that the reaction rate of two rapid pyrolysis chars increases at the beginning and decreases subsequently with increasing carbon conversion at relatively high temperatures. The heating rate of coal has a significant effect on the gasification process. The activation energy of slow pyrolysis char varies between 160 kJ/mol and 180 kJ/mol during gasification. The activation energy of the two rapid pyrolysis chars displays a linear trend when the carbon conversion is less than 40% and decreases slowly afterwards.  相似文献   

15.
《Fuel》2006,85(12-13):1631-1641
Chemical-looping reforming is a technology that can be used for partial oxidation and steam reforming of hydrocarbon fuels. This paper describes continuous chemical-looping reforming of natural gas in a laboratory reactor consisting of two interconnected fluidized beds. Particles composed of 60 wt% NiO and 40 wt% MgAl2O4 are used as bed material, oxygen carrier and reformer catalyst. There is a continuous circulation of particles between the reactors. In the fuel reactor, the particles are reduced by the fuel, which in turn is partially oxidized to H2, CO, CO2 and H2O. In the air reactor the reduced oxygen carrier is reoxidized with air. Complete conversion of natural gas was achieved and the selectivity towards H2 and CO was high. In total, 41 h of reforming were recorded. Formation of solid carbon was noticed for some cases. Adding 25 vol% steam to the natural gas reduced or eliminated the carbon formation.  相似文献   

16.
Detailed axial temperature distribution has been studied in a two-stage process for catalytic partial oxidation of methane to syngas, which consists of two consecutive fixed bed reactors with oxygen or air separately introduced. The first stage of the reactor, packed with a combustion catalyst, is used for catalytic combustion of methane at low initial temperature. While the second stage, filled with a partial oxidation catalyst, is used for the partial oxidation of methane to syngas. A pilot-scale reactor packed with up to 80 g combustion catalyst and 80 g partial oxidation catalyst was employed. The effects of oxygen distribution in the two sections, and gas hourly space velocity (GHSV) on the catalyst bed temperature profile, as well as conversion of methane and selectivities to syngas were investigated under atmospheric pressure. It is found that both oxygen splitting ratio and GHSV have significant influence on the temperature profile in the reactor, which can be explained by the synergetic effects of the fast exothermic oxidation reactions and the slow endothermic (steam and CO2) reforming reactions. Almost no change in activity and selectivity was observed after a stability experiment for 300 h.  相似文献   

17.
Jin Bai  Wen Li  Baoqing Li 《Fuel》2008,87(4-5):583-591
The coal ash obtained at 815 °C under oxidizing atmosphere was further treated at 1300 °C and 1400 °C under reducing atmosphere. The resultant ashes were examined by XRD, SEM/EDX and FTIR. The results show that the residence time of coal ash at high temperatures has considerable influences on the compositions of coal ash and little effect on the amounts of unburned carbon. The amorphous phase of mineral matters increases with the increasing temperature. The FTIR peaks due to presence of different functional groups of minerals support the findings of XRD, and supply additional information of amorphous phase which cannot be detected in XRD. The ash samples generated from a fixed bed reactor during char gasification were also studied with FTIR. The temperatures of char preparation are responsible for the different transformation of minerals during high temperature gasification.  相似文献   

18.
《Fuel》2002,81(11-12):1409-1415
Hydrogen exchange reaction of three Argonne coals (Illinois No. 6, Upper Freeport and Pocahontas #3) and Wandoan coal with tritiated gaseous hydrogen were performed at several temperatures. Hydrogen exchange reaction was performed in a flow reactor packed with 0.4 g of coal and 0.05 g of catalysts under the following conditions: pressure 15 kg/cm2, temperature 200, 250, 300 °C, carrier gas H2 or N2 5 ml/min. When a pulse of [3H]H2 was introduced into a coal in H2 carrier gas at several temperatures, the delay of [3H]H2 pulse observed increased with increasing the reaction temperature and decreased with increasing coal rank. Further in the reaction of tritiated coals with gaseous hydrogen at constant temperature, the hydrogen exchange rate was estimated from the release rate of [3H]H2. The apparent hydrogen exchange rate at 200 °C was higher than that at 250 °C. This shows that the hydrogen with low reactivity came to participate in the reaction at high temperature. When the reaction of tritiated coal with gaseous hydrogen was performed during heat treatment, one, two or three peaks of tritium concentration were observed in the outlet of the reactor depending on temperature (200, 250 or 300 °C, respectively) at which tritium was incorporated into coal initially. It was suggested that there were at least three kinds of hydrogen with different reactivity in coal.  相似文献   

19.
The steam reforming (SR) of ethanol/phenol mixture (168 gTOT/N m3, ethanol:phenol 2:1 mol, GHSV = 54,000 h 1), assumed as a model for tar mixtures, has been studied over a 5% Ni/Al2O3 catalyst (155 m2/g), in the presence and in the absence of 210 ppm tetrahydrothiophene (THT) as a sulphur containing contaminant. The sulphidation of the catalyst by THT has been studied by IR spectroscopy. Infrared spectra of CO adsorbed at low temperature over the oxidized, the reduced and the sulphurized catalyst have also been recorded. The catalyst acts as a bifunctional one, with the behaviour attributed to the uncovered support (alumina modified by nickel ions) at 773 K (dehydration of ethanol to ethylene, dehydrogenation to acetaldehyde and alkylation of phenol with ethanol) that fully disappears at 973 K when steam reforming occurs very selectively. By lowering back the reaction temperature, the support behaviour reappears. THT poisons selectively the Ni component, thus causing the appearance of the support behaviour also at 973 K. IR experiments show that THT deposes sulphur at the catalyst surface with the production of gas-phase 1,3-butadiene, thus converting the catalyst into a “sulphided” SR-inactive state. The steam reforming activity of the poisoned catalyst progressively reappears upon feeding back S-free feed at 973 K. IR study suggests that steam “cleans” the catalyst surface by sulphur, generating a “disordered” surface with dispersed Ni2 + and Ni0 species, that could slowly re-approach the initial active state.  相似文献   

20.
A novel coal conversion process was proposed: the method combines “a hydrothermal extraction of brown coal (HT-Extraction)” and “a catalytic hydrothermal gasification of the extract (CHT-Gasification)” both of which are performed under the exactly same conditions of less than 350 °C and less than 20 MPa. Organic compounds in the aqueous phase, extracted from brown coal, was gasified using a novel Ni-supported carbon catalyst developed by the authors, producing combustible gas rich in CH4 and H2. Through this process performed at 350 °C and 18 MPa, an Australian brown coal was almost perfectly converted into 53% of upgraded coal, 23% of methane, and 24% of carbon dioxide on carbon basis. Simultaneously, 4.4 mol of hydrogen was generated from 100 mol of carbon of the coal. This process transferred 97% of energy involved in the raw coal to the products, indicating its effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号