首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of experimental investigations of boiling incipience and bubble dynamics of water under pulsed heating conditions for various pulse durations ranging from 1 ms to 100 ms were conducted. Using a very smooth square platinum microheater, 100 μm on a side, and a high-speed digital camera, the boiling incipience was observed and investigated as a function of the bulk temperature of the microheater, pulse power level, and pulse duration. Given a specific pulse duration, for low pulse power levels, there would be no bubble nucleation or bubble mergence, for moderate pulse power levels, individual bubbles generated on the heater merged to form a single large bubble, while for high pulse power levels, the rapid growth of the individual bubbles and subsequent bubble interaction, resulted in a reduction in bubble coalescence into a single larger bubble, referred to as bubble splash. The transient heat flux range at which bubble coalescence occurs was identified experimentally, along with the temporal variations of bubble size, bubble interface velocity and interface acceleration.  相似文献   

2.
Plasma was generated in water by irradiation at high frequency of 13.56 MHz, and the behavior of bubbles including the plasma was observed by a high-speed camera. The generation pattern of the bubbles was classified into four types according to liquid temperature and supplied power. Conducting the simulation, the maximum temperature in the bubble was found to be from 3500 K to 4300 K, and the decomposition of water molecule occurred. The gas in the bubble was found to become high ratio of hydrogen. The phenomenon can be regarded as a film boiling of exceptionally high heat flux.  相似文献   

3.
A photographic study was carried out for the subcooled flow boiling of water to elucidate the rise characteristics of single vapor bubbles after the departure from nucleation sites. The test section was a transparent glass tube of 20 mm in inside diameter and the flow direction was vertical upward; liquid subcooling was parametrically changed within 0–16 K keeping system pressure and liquid velocity at 120 kPa and 1 m/s, respectively. The bubble rise paths were analyzed from the video images that were obtained at the heat flux slightly higher than the minimum heat flux for the onset of nucleate boiling. In the present experiments, all the bubbles departed from their nucleation sites immediately after the inception. In low subcooling experiments, bubbles slid upward and consequently were not detached from the vertical heated wall; the bubble size was increased monotonously with time in this case. In moderate and high subcooling experiments, bubbles were detached from the wall after sliding for several millimeters and migrated towards the subcooled bulk liquid. The bubbles then reversed the direction of lateral migration and were reattached to the wall at moderate subcooling while they collapsed due to the condensation at high subcooling. It was hence considered that the mechanisms of the heat transfer from heated wall and the axial growth of vapor volume were influenced by the difference in bubble rise path. It was observed after the inception that bubbles were varied from flattened to more rounded shape. This observation suggested that the bubble detachment is mainly caused by the change in bubble shape due to the surface tension force.  相似文献   

4.
The dynamics and heat transfer characteristics of flow boiling bubble train moving in a micro channel is studied numerically. The coupled level set and volume of fluid (CLSVOF) is utilized to track interface and a non-equilibrium phase change model is applied to calculate the interface temperature as well as heat flux jump. The working fluid is R134a and the wall material is aluminum. The fluid enters the channel with a constant mass flux (335 kg/m2 1 s), and the boundary wall is heated with constant heat flux (14 kW/m2). The growth of bubbles and the transition of flow regime are compared to an experimental visualization. Moreover, the bubble evaporation rate and wall heat transfer coefficient have been examined, respectively. Local heat transfer is significantly enhanced by evaporation occurring vicinity of interface of the bubbles. The local wall temperature is found to be dependent on the thickness of the liquid film between the bubble train and the wall.  相似文献   

5.
Heat transfer associated with a vapor bubble sliding along a downward-facing inclined heater surface was studied experimentally using holographic interferometry. Volume growth rate of the bubbles as well as the rate of heat transfer along the bubble interface were measured to understand the mechanisms contributing to the enhancement of heat transfer during sliding motion. The heater surface was made of polished silicon wafer (length 185 mm and width 49.5 mm). Experiments were conducted with PF-5060 as test liquid, for liquid subcoolings ranging from 0.2 to 1.2 °C and wall superheats from 0.2 to 0.8 °C. The heater surface had an inclination of 75° to the vertical. Individual vapor bubbles were generated in an artificial cavity at the lower end of the heater surface. High-speed digital photography was used to measure the bubble growth rate. The temperature field around the sliding bubble was measured using holographic interferometry. Heat transfer at the bubble interface was calculated from the measured temperature field. Results show that for the range of parameters considered the bubbles continued to grow, with bubble growth rates decreasing with increasing liquid subcooling. Heat transfer measurements show that condensation occurs on most of the bubble interface away from the wall. For the parameters considered condensation accounted for less than 12% of the rate heat transfer from the bubble base. In this study the heater surface showed no drop in temperature as a result of heat transfer enhancement during bubbles sliding.  相似文献   

6.
7.
An experiment is carried out here to investigate flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip flush-mounted in the bottom of a horizontal rectangular channel. Besides, three different micro-structures of the chip surface are examined, namely, the smooth, pin-finned 200 and pin-finned 100 surfaces. The pin-finned 200 and 100 surfaces, respectively, contain micro-pin-fins of size 200 μm × 200 μm × 70 μm (width × length × height) and 100 μm × 100 μm × 70 μm. The pitch of the fins is equal to the fin width for both surfaces. The effects of the FC-72 mass flux, imposed heat flux, and surface micro-structures of the silicon chip on the FC-72 saturated flow boiling characteristics are examined in detail. The experimental data show that an increase in the FC-72 mass flux causes a delay in the boiling incipience. However, the flow boiling heat transfer coefficient is not affected by the coolant mass flux. But adding the micro-pin-fin structures to the chip surfaces can effectively enhance the single-phase convection and flow boiling heat transfer. Moreover, the mean bubble departure diameter and active nucleation site density are reduced for a rise in the FC-72 mass flux. A higher coolant mass flux results in a higher mean bubble departure frequency. Furthermore, larger bubble departure diameter, higher bubble departure frequency, and higher active nucleation site density are observed at a higher imposed heat flux. We also note that adding the micro-pin-fins to the chips decrease the bubble departure diameter and increase the bubble departure frequency. However, the departing bubbles are larger for the pin-finned 100 surface than the pin-finned 200 surface but the bubble departure frequency exhibits an opposite trend. Finally, empirical equations to correlate the present data for the FC-72 single-phase liquid convection and saturated flow boiling heat transfer coefficients and for the bubble characteristics are provided.  相似文献   

8.
In this study, Leidenfrost experiments were conducted for water, NaCl, and KCl aqueous solutions at atmospheric pressure. In our tests, a 1.1 g test liquid was gently deposited on a horizontal heated aluminum surface. The evaporation time at various surface temperatures was recorded and plotted as evaporation curves. To examine the relationship between bubble coalescence, dissolved salt and the Leidenfrost transition, test surfaces were fabricated with arrays of small holes serving as artificial nucleating sites. Cavity spacing is 1 mm or 2 mm. It is demonstrated that the dissolved salt increases the Leidenfrost temperature. Mechanisms associated the Leidenfrost transition, such as suppression of bubble coalescence, variation in properties and salt deposition during the initial liquid–solid contact, are explored and accessed.  相似文献   

9.
The flow boiling heat transfer in a single microchannel was investigated with pure water and nanofluid as the working fluids. The microchannel had a size of 7500 × 100 × 250 μm, which was formed by two pyrex glasses and a silicon wafer. A platinum film with a length of 3500 μm and a width of 80 μm was deposited at the bottom channel surface, acting as the heater and temperature sensor. The nanofluid had a low weight concentration of 0.2%, consisting of de-ionized water and 40 nm Al2O3 nanoparticles. The nanoparticle deposition phenomenon was not observed. The boiling flow displays chaotic behavior due to the random bubble coalescence and breakup in the milliseconds timescale at moderate heat fluxes for pure water. The flow instability with large oscillation amplitudes and long cycle periods was observed with further increases in heat fluxes. The flow patterns are switched between the elongated bubbles and isolated miniature bubbles in the timescale of 100 s. It is found that nanofluid significantly mitigate the flow instability without nanoparticle deposition effect. The boiling flow is always stable or quasi-stable with significantly reduced pressure drop and enhanced heat transfer. Miniature bubbles are the major flow pattern in the microchannel. Elongated bubbles temporarily appear in the milliseconds timescale but isolated miniature bubbles will occupy the channel shortly. The decreased surface tension force acting on the bubble accounts for the smaller bubble size before the bubble departure. The inhibition of the dry patch development by the structural disjoining pressure, and the enlarged percentage of liquid film evaporation heat transfer region with nanoparticles, may account for the heat transfer enhancement compared to pure water.  相似文献   

10.
Multi bubbles interaction and merger in a micro-channel flow boiling has been numerically studied. Effects of mass flux (56, 112, 200, and 335 kg/m2 1 s), wall heat flux (5, 10, and 15 kW/m2) and saturated temperature (300.15 and 303.15 K) are investigated. The coupled level set and volume of fluid (CLSVOF) method and non-equilibrium phase model are implemented to capture the two-phase interface, and the lateral merger process. It is found that the whole transition process can be divided to three sub-stages: sliding, merger, and post-merger. The evaporation rate is much higher in the first two stages due to the boundary layer effects in. Both the mass flux and heat flux affect bubble growth. Specifically, the bubble growth rate increase with the increase of heat flux, or the decrease of mass flux.  相似文献   

11.
Subcooled boiling incipience on a highly smooth microscale heater (270 μm × 270 μm) submerged in FC-72 liquid is investigated. Using high-speed imaging and a transient heat flux measurement technique, the mechanics of homogeneous nucleation on the heater are elucidated. Bubble incipience on the microheater was observed to be an explosive process. It is found that the superheat limit of boiling liquid is required for bubble incipience. It is concluded that boiling incipience on the microheater is a homogeneous liquid–vapor phase change process. This is in contrast to recent observations of low-superheat heterogeneous nucleation on metallic surfaces of rms roughness ranging from 4 to 28 nm [T.G. Theofanous, J.P. Tu, A.T. Dinh, T.N. Dinh, The boiling crisis phenomenon part I: nucleation and nucleate boiling heat transfer, Exp. Therm. Fluid Sci. 26 (2002) 775–792; Y. Qi, J.F. Klausner, Comparison of gas nucleation and pool boiling site densities, J. Heat Transfer 128 (2005) 13–20; Y. Qi, J.F. Klausner, Heterogeneous nucleation with artificial cavities, J. Heat Transfer 127 (2005) 1189–1196]. Following the explosive bubble incipience, the boiling process on the microheater can be maintained at much lower superheats. This is mainly due to the necking during bubble departure that leaves an embryo from which the next-generation bubbles grow.  相似文献   

12.
This work investigates the nucleation and growth of CO2 bubbles due to chemical reactions of sulfuric acid and sodium bicarbonate in three types of microchannels: one with uniform cross-section, one converging, and another one diverging. The Y-shaped test section, composed of main and two front microchannels, was made of P-type 〈1 0 0〉 orientation SOI (silicon on insulator) wafer. Bubble nucleation and growth in microchannels under various conditions were observed using a high-speed digital camera. The theoretical model for bubble dynamics with a chemical reaction is reviewed or developed. In the present study, no bubble was nucleated at the given inlet concentration and in the range of flow rate in the converging microchannel while the nucleation and growth of bubbles were observed in the diverging and uniform cross-section microchannels. Bubbles are nucleated at the channel wall and the equivalent bubble radius increases linearly during the initial period of the bubble growth. The bubble growth behavior for a particular case, without relative motion between the bubble and liquid, shows that the mass diffusion controls the bubble growth; consequently, the bubble radius grows as a square root of the time and agrees very well with the model in the literature. On the other hand, for other cases the bubbles stay almost at the nucleation site while growing with a constant gas product generation rate resulting in the instant bubble radius following the one-third power of the time.  相似文献   

13.
Experiments are conducted here to investigate subcooled flow boiling heat transfer and associated bubble characteristics of FC-72 on a heated micro-pin-finned silicon chip flush-mounted on the bottom of a horizontal rectangular channel. In the experiments the mass flux is varied from 287 to 431 kg/m2 s, coolant inlet subcooling from 2.3 to 4.3 °C, and imposed heat flux from 1 to 10 W/cm2. Besides, the silicon chips contain three different geometries of micro-structures, namely, the smooth, pin-finned 200 and pin-finned 100 surfaces. The pin-finned 200 and 100 surfaces, respectively, contain micro-pin-fins of size 200 μm × 200 μm × 70 μm (width × length × height) and 100 μm × 100 μm × 70 μm. The measured data show that the subcooled flow boiling heat transfer coefficient is reduced at increasing inlet liquid subcooling but is little affected by the coolant mass flux. Besides, adding the micro-pin-fin structures to the chip surface can effectively raise the single-phase convection and flow boiling heat transfer coefficients. Moreover, the mean bubble departure diameter and active nucleation site density are reduced for rises in the FC-72 mass flux and inlet liquid subcooling. Increasing coolant mass flux or reducing inlet liquid subcooling results in a higher mean bubble departure frequency. Furthermore, larger bubble departure diameter, higher bubble departure frequency, and higher active nucleation site density are observed as the imposed heat flux is increased. Finally, empirical correlations for the present data for the heat transfer and bubble characteristics in the FC-72 subcooled flow boiling are proposed.  相似文献   

14.
Nucleate boiling is commonly characterised as a very complex and elusive process. Many involved mechanisms are still not fully understood and more detailed consideration is needed. In this study, bubble growth from micro-fabricated artificial cavities with varied spacing on a horizontal 380 μm thick silicon wafer was investigated. The horizontally oriented boiling surface was heated by a thin resistance heater integrated on the rear of the silicon test section. The temperature was measured using 16 integrated micro-sensors situated on the boiling surface, each with an artificial cavity located in its geometrical centre. Experiments with three different spacings 1.5, 1.2 and 0.84 mm in between cavities with a nominal mouth diameter of 10 μm and a depth of 80 μm were undertaken. To conduct pool boiling experiments, the test section was mounted inside a closed stainless steel boiling chamber with optical access and completely immersed in degassed fluorinert FC-72. Bubble nucleation, growth and detachment at 0.5 and 1 bar absolute pressure were investigated using high-speed imaging. The effect of decreasing inter-site distance on bubble nucleation frequency, bubble departure frequency and diameter with increasing wall superheat is presented. Furthermore, the frequency of horizontal bubble coalescence was determined. The regions of influence on the measured frequencies and bubble departure diameter were compared with recently published findings.  相似文献   

15.
Observations of boiling behaviors and measurements of critical heat flux (CHF) were carried out for saturated water boiling on a horizontal, upward-facing plate at pressures from atmospheric to 7 MPa. The primary bubbles diminish in size almost in inverse proportion to pressure and commence to coalesce in the very low heat flux region. The diameter of detached coalesced bubbles increases with increases in the heat flux and reaches about 10 mm even at a pressure of 5 MPa. Detachment frequency of the coalesced bubbles was unaffected by the heat flux and pressure. The CHF predicted based on the macrolayer dryout model agrees well with the measured data.  相似文献   

16.
An experimental study was carried out to investigate the pool boiling heat transfer in an inclined annular tube submerged in a pool of saturated water at atmospheric pressure. The outer diameter and the length of the heated inner tube were 25.4 mm and 500 mm, respectively. The gap size of the annulus was 15 mm. For the tests, annuli with both open and closed bottoms were considered. The inclination angle was varied from the horizontal position to the vertical position. At a given heat flux, the heat transfer coefficient was increased with the inclination angle increase. Effects of the inclination angle on heat transfer were more clearly observed in the annulus with open bottoms. The main cause for the tendencies was considered as the difference in the intensity of liquid agitation and bubble coalescence due to the enclosure by the outer tube. One of the important factors in the annulus with open bottom was the convective fluid flow.  相似文献   

17.
In the experiment, bubbles were generated from the brass nozzle with the inner diameter of 1.1 mm submerged in the glass tank (400 × 400 × 700 mm) filled with distillated water. Pressure fluctuations and signal from the laser-phototransistor sensor were recorded simultaneously. The movement of bubble wall was measured using a high speed camera and image processing technique. Results of analysis of images have been correlated with pressure and laser-phototransistor signals. In the analysis the Fourier spectrum, wavelet spectrum and non-linear methods (mutual information, attractor reconstruction, largest Lyapunov exponent and correlation dimension) have been used.The three applied in the paper techniques of measurement of dynamical properties of bubbling allow us to discuss in detail the mechanisms of different chaotic behaviors of bubbling. Two ranges of the air volume flow rate with different kinds of bubble chaotic behaviors have been identified. For the air volume flow rate less than 0.2 l/min the air pressure chaotic fluctuations do not cause the significant chaotic changes of bubble departure frequencies. When the air volume flow rate increases above the 0.2 l/min, the interaction between departing bubbles causes nonperiodic bubble wall movement, and then the appearance of chaotic changes of bubble departure frequency.  相似文献   

18.
This study investigates experimentally eruptive boiling in a silicon-based rectangular microchannel with a hydraulic diameter of 33.7 μm, a width of 99.8 μm and a depth-to-width ratio of 0.203. The microchannel is made of SOI wafer and prepared using bulk micro-machining and anodic bonding. The surface roughness for both the bottom and the side walls was measured using an atomic force microscope. The evolution of the eruptive boiling of water in the smooth microchannel was clearly observed using an ultra high-speed video camera (up to 50,000 frames/s) at mass fluxes of 417 and 625 kg/m2 s and a heat flux from 14.9 to 372 kW/m2. It is confirmed that eruptive boiling is a form of rapid bubble nucleation after which the bubble merges with a slug bubble downstream in a short distance or evolve to a slug bubble. The bubble frequency in all of the cases studied is provided. Eruptive boiling may be predicted classically with nano-sized cavities that are consistent with the measured surface roughness.  相似文献   

19.
In this investigation, boiling incipience and bubble dynamics on a microheater with a geometry of 100 μm × 100 μm fabricated with MEMS technology are evaluated using a high-speed digital camera. For the purpose of comparison with conventional boiling heat transfer, boiling incipience and bubble dynamics are also studied on a carefully selected microheater with a fabricated defect (i.e., a microcavity on the heater surface). Of industrial interest are the effects of dissolved gases on boiling incipience and bubble dynamics, which are also discussed in detail. The possible nucleation temperature (or incipience temperature) is analyzed and discussed from the perspective of the measured bulk temperature of the microheater and a 3D heat conduction numerical model. The time-resolved bubble dynamics (i.e., the bubble size evolution, interface velocity and interface acceleration) are all presented along with high-speed digital images. Based upon this investigation, it is clear that explosive boiling can take place on a smooth surface no matter how slow the heating rate, and dissolved gases have a significant influence on the incipience temperature and bubble behavior. Furthermore, this study illustrates that the classical kinetics of boiling can explain the explosive boiling occurring on a smooth surface in principle and can provide a useful guide for the design of microscale heat transfer and/or MEMS devices. Although unexpected, due to the gravitational effects, Marangoni flow on the vapor–liquid interface induced by the temperature gradient was also observed.  相似文献   

20.
This study explores the mechanism of flow boiling critical heat flux (CHF) in a 2.5 mm × 5 mm horizontal channel that is heated along its bottom 2.5 mm wall. Using FC-72 as working fluid, experiments were performed with mass velocities ranging from 185–1600 kg/m2s. A key objective of this study is to assess the influence of inlet vapor void on CHF. This influence is examined with the aid of high-speed video motion analysis of interfacial features at heat fluxes up to CHF as well as during the CHF transient. The flow is observed to enter the heated portion of the channel separated into two layers, with vapor residing above liquid. Just prior to CHF, a third vapor layer begins to develop at the leading edge of the heated wall beneath the liquid layer. Because of buoyancy effects and mixing between the three layers, the flow is less discernible in the downstream region of the heated wall, especially at high mass velocities. The observed behavior is used to construct a new separated three-layer model that facilitates the prediction of individual layer velocities and thicknesses. Combining the predictions of the new three-layer model with the interfacial lift-off CHF model provides good CHF predictions for all mass velocities, evidenced by a MAE of 11.63%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号