首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study of fatigue crack propagation and crack closure behaviour, in compact tension specimens of AISI 316 (N) weld has been conducted. The crack closure load was determined from the changes in the slope of the load–displacement curves using global crack mouth opening displacement (GCMOD) type gauge. The results were compared with those measured by acoustic emission technique which showed good agreement with each other. The experimental data bear clear evidence of fatigue crack closure. The crack opening force was found to increase moderately with crack length and increasing R-ratio, under a constant Pmax of 5 kN. Above a critical R-ratio of 0.45 (approximately), the crack closure load is smaller than the minimum applied load. A good correlation was obtained for ΔKeffK = 0.6684 – 2.4135R + 7.0077R2 in the range 0 R  0.5. The magnitude of crack closure is used to interpret observed crack growth behaviour at different R-ratios.  相似文献   

2.
Corrosion fatigue crack growth tests have been carried out at various stress ratios for a low alloy steel SNCM 2 and type 304 stainless steel.

Measurements of the effective stress intensity factor range ratio U were performed to explain the effect of stress ratio R.

The corrosive environment decreased da/dN at R = 0.1, 0.4 and little affected da/dN at R = 0.9 for SNCM 2 and increased da/dN at all R ratios for SUS 304.

It was confirmed that there exists a threshold stress intensity factor ΔKthCF in 3% NaCl solution for both materials tested.

The corrosive environment decreased ΔKthCF for all conditions tested except at R = 0.1 and 0.4 for SNCM 2, where ΔKthCF-values were nearly equal to ΔKth-values in air. ΔKthCF/ΔKth was 0.6 at R = 0.9 for SNCM 2 and 0.8, 0.5 and 0.7 at R = 0.1, 0.7 and 0.9 for SUS 304, respectively.

It was shown that the complicated effect of stress ratios on crack growth for SNCM 2 can be explained using effective stress intensity factor ΔKeff.  相似文献   


3.
The linear part of the fatigue crack growth diagram is found to be divided into Stages IIa and IIb by the point O whose coordinates K* and A are dependent on the physical and structural characteristics of the material. In Stage IIa Keff remains constant as the microcrack advances in increments corresponding to the dislocation cell structure size, λ, pausing for (dN−1) cycles to accumulate the elastic energy required for the crack opening. During Stage IIb Kop remains constant and the microcrack opens during each cycle and advances irrespective of the substructure but in accordance with an increasing value of Keff. The effects of temperature and vacuum on K* are considered; the A values correspond to those of λ and are independent of the above effects.  相似文献   

4.
Crack growth rates for large fatigue cracks in 12 variations of particulate silicon carbide reinforced aluminum alloy composites have been measured. Composites with seven different matrix alloys were tested, four of which were of precipitation hardening compositions, and those were tested in both as-extruded and peak aged conditions. Five of the materials were made by casting, ingot metallurgical methods and two of the alloys by mechanical alloying, powder metallurgical methods. For both manufacturing methods, primary fabrication was followed by hot extrusion. The fatigue crack growth curves exhibited an approximately linear, or Paris law, region, fitting the function da/dN = BΔKs, and a threshold stress intensity factor, ΔKth. As has been found for other materials, the coefficients B and s are correlated; for these composites In B= −16.4−2.1s. A correlation was also found between ΔKth and s, and it was found possible to compute the magnitude of ΔKth using a simple model for the threshold together with yield stress and SiC size and volume fraction. These results were explained using a relationship between ΔKth and crack closure determined previously for unreinforced aluminum alloys. The path of fatigue crack growth is through the matrix for these composites, and SiC has the effect of altering the slip distance, therefore, the plasticity accompanying fatigue cracks. It was shown that all the crack growth rate curves were reduced to one equation having the form da/dN = BKeffs' where B' = 6.5 × 10-9m/cy and s' = 1.7. A partly theoretical method for predicting fatigue crack growth rates for untested composites is given. Fatigue crack surface roughness was measured and found to be described by a fractal dimension, but no correlation could be obtained between surface roughness parameters and ΔKth.  相似文献   

5.
In this work, the influence of rapid load reduction on fatigue crack growth in the threshold regime of the aluminium alloy 2024-T3 has been studied. It can be shown that fatigue crack growth may be severely influenced by crack closure due to oxide formation and fracture surface roughness. After rapid load reduction, crack arrest could be observed at Kmax values 10–100% above the constant amplitude threshold, depending on the environment. With measurements in different environments (humid air and vacuum), the oxide-induced crack closure effect could be recognized as being mainly responsible for an increase of the stress intensity threshold. Using high-frequency fatigue testing equipment, it was possible to show that after rapid load reduction in a vacuum, cracks may begin to grow again after crack arrest of more than 5 × 107 cycles.  相似文献   

6.
The influence of stress ratio R and stress intensity range ΔK on crack closure and fatigue crack growth were studied. Crack closure and crack growth experiments were performed on 6063-T6 Al alloy. Crack closure stresses were measured using a surface-measurement technique with a COD gauge. The gauge was placed at different locations behind the crack tip, and it was found that the location of the gauge does not influence the closure load. The closure load was however found to be a function of R and ΔK. Fatigue crack growth rate is found to depend upon R, U and ΔK. A model for both U and da/dN has been developed.  相似文献   

7.
The increase with increasing temperature of KIc, measured with 2CT and 1'CT specimens, from about 103N mm at 77 K to about 2.103 N mm at about 170 K is attributed to the increasing proportion of dimple to cleavage fracture as revealed by scanning electron microscope investigation.

The specimens were prestrained to different partial scale yielding states by the same kind of loading, performed at 298 K, as in the later KIctests, performed at 77 K. After pretension KIc = K*Ic is increased by a maximum amount of about half of the value K0Icof nonprestrained specimens, after precompression it is reduced by the same amount if this value is evaluated from the load at which a pop-in occurs. The value KIc = K**Ic for the final fracture lies between K*Ic and K0Ic. These results are interpretated in terms of the residual stress states due to prestraining.  相似文献   


8.
A stochastic model describing the crack evolution and scatter associated with the crack propagation process has been built on the basis of the discontinuous Markovian process. The evolution and scatter are identified in terms of constant probability curves whose equation is derived as In Pr(i) = B(eKI0eKi), iI0, where i is the number of cycles, B and K are crack-length-dependent variables, Pr(i) is the probabiliity of the crack being at position r along the fracture surface after i cycles elapse and I0 is the minimum number of cycles required for the crack to advance from one position on the fracture surface to the next. The validity of the model is established by comparing the crack growth curves generated for Al 2024-T3 at a specific loading condition with those experimentally obtained.  相似文献   

9.
Ignoring crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading. Crack closure is believed to contribute to the crack growth retardation, although the specific closure mechanism is debatable. The delay period and corresponding crack growth rate transients following overload and overload/underload cycles were systematically measured as a function of load ratio (R) and overload magnitude. These responses are correlated in terms of the local “driving force” for crack growth, i.e. the effective stress intensity factor range (ΔKeff). Experimental results are compared with the predictions of a Dugdale-type crack closure model and improvements in the model are suggested.  相似文献   

10.
The classical problem of uniform heat-flow disturbed by an insulated penny-shaped crack is solved in the context of micropolar elasticity. The mode II stress intensity factor, KII is found to depend on two new non-dimensional parameters N and τ − N is a measure of the coupling of the displacement field with the microstructure or the medium (0 N √2) and τ is the ratio of a material characteristic length to the crack radius. KII remains higher than its classical value when N > 0, τ > 0 and attains the classical value as N and τ vanish. A closed-form expression to KII is obtained in the physically important limiting case of τ → 0 with N fixed. In this limit the relative increment in KII, over its classical value, is found to be (1 − v')N2 where v' is the micropolar Poisson's ratio.  相似文献   

11.
The application of the fracture mechanics approach to time-dependent high temperature crack growth has been reviewed. Available data on several structural alloys indicate that depending on the environmental sensitivity and creep ductility of the material, creep crack growth can be characterized by either linear elastic parameter, K, non-linear elastic-plastic parameter, J*-integral, or reference stress, σref. In particular for materials that are significantly sensitive to environment, K can adequately characterize the growth rate, and for materials that are significantly creep ductile, σref can be used to predict creep life of a cracked body. Finally, for materials that are relatively ductile and wherein crack growth occurs predominantly by a deformation process, J* integral appears to be the characterizing parameter for the growth rate. Data for several materials indicate that under steady state crack growth conditions, there may be a unique growth rate-J* relation independent of temperature and material. This would have a profound impact in terms of the utility of fracture mechanics approach to predict creep crack growth rate and needs to be examined further. Conditions under which K, J* or σref is applicable are discussed in detail.  相似文献   

12.
An analysis is made of shear lip width measurements and the transition of tensile mode fatigue cracks to shear mode fatigue cracks, as observed on fatigue crack surfaces of aluminium alloy sheet material. It could be shown that these phenomena were controlled by ΔKeff, rather than Kmax or ΔK. For crack growth in air the shear lip width was approximately proportional to (ΔKeff)2, but it was significantly larger than the estimated size of the reversed plastic zone. The initiation of shear lips, the transition from plane stress to plane strain along the crack front and the environmental effect on shear lips are briefly considered in the discussion.  相似文献   

13.
Investigations have been carried out to study the relaxation of the surface residual stress in 0.23% C steel due to the application of fatigue loading. The residual stress was induced in the specimen by pre-straining and was measured by X-ray back reflection method using Cr-K radiation. The surface residual stress induced, depends on the plastic strain and appears to bear a relation of the type σR = σo(ep)0.78. The decay of the residual stress appears to depend on log N, given by the relation σR1 = σROK log N, where N is the number of fatigue cycles. The constant K depends on the initial value of the residual stress.  相似文献   

14.
The near-threshold fatigue crack growth behavior of Ti-6A1-4V alloy has been investigated in low O2 steam (< 1 ppm), high O2 steam (40ppm), and boiling water with various concentrations of Nad and/or Na22SO4. At load ratio (R) of 0.5, high O2 steam increased the crack propagation rates in the threshold region, relative to low O2 steam. However, at R = 0.8, the near-threshold crack growth rates in low and high O2 steam were comparable. Values of threshold stress intensity range, ΔKth, slightly increased with an increase in the concentration of NaCl in the solution. Varying solution pH from 5.0 to 10.0 in a 0.1 g NaCl plus 0.1 g Na2SO4 per 100ml H2O solution had no effect on the rates of near-threshold crack propagation. Increasing the hydrazine level from 30 to 107 ppb in the same salt solution also did not change the resistance to crack growth. Comparing the present results with the previous data on 403 stainless steel, the near-threshold crack propagation rate performance in Ti-6Al-4V alloy is superior to that in 403 steel in both the steam and salt solution environments.  相似文献   

15.
Fatigue crack initiation and growth characteristics under mixed mode loading have been investigated on aluminum alloys 2017-T3 and 7075-T6, using a newly developed apparatus for mixed mode loading tests. In 2017-T3, the fatigue crack initiation and growth characteristics from a precrack under mixed mode loading are divided into three regions—shear mode growth, tensile mode growth and no growth—on the ΔKIKII plane. The shear mode growth is observed in the region expressed approximately by ΔKII > 3MPa√m and ΔKIIKI > 1.6. In 7075-T6, the condition of shear mode crack initiation is expressed by ΔKII > 8 MPa√m and ΔKIIKI > 1.6, and continuous crack growth in shear mode is observed only in the case of ΔKIKII, 0. The threshold condition of fatigue crack growth in tensile mode is described by the maximum tensile stress criterion, which is given by Δσθmax √2πr 1.6MPa√m, in both aluminum alloys. The direction of shear mode crack growth approaches the plane in which KI decreases and KII increases towards the maximum with crack growth. da/dNKII relations of the curved cracks growing in shear mode under mixed mode loading agree well with the da/dNKII relation of a straight crack under pure mode II loading.  相似文献   

16.
This study involves the R effect and environment effect on crack closure mode, in 7175 T 651 aluminium alloy. To obtain one of the selected objectives, it was necessary to use a clip gauge located at the notch of the compact specimen and a C.T.O.D. gauge located at the crack tip. The crack opening phenomena observed in our tests depends on the applied method which accounts for the differences in ΔKeff found in the literature. The systematic use of the two methods allowed us to bring to light common features permitting the calculation of ΔKeff according to Elber's criteria. The concept of ΔKeff does not fully explain the influence of R ratio and the environment effect.  相似文献   

17.
The viability of the instrumented Charpy impact testing for studying dynamic fracture behaviour of rotor steels is investigated. This encompasses determination of dynamic fracture toughness (KId) and dynamic J-integral (JId), establishing correlation between oscilloscope profiles and fracture morphology of the ruptured samples and identifying fracture mechanisms involved. The predicted oscilloscope profiles for common fracture modes, their experimental counterparts, and the inferences drawn from these concerning operating fracture mechanisms are in good accord with the fractographic observations made on broken samples. Thus, the respective oscillographs vividly manifest the observed variations in the fracture processes. Fracture mechanics analysis of load-time and energy-time records of pre-cracked Charpy samples gave dynamic fracture toughness (KId) values of 43, 74 and 124MN/m3/2, and dynamic J-integral (JId) values of 0.008, 0.03 and 0.06 MJ/m2 at −180°, 26° and 96°C respectively. It is possible that the deduced JId values correspond to a small but finite amount of crack extension instead of Zero Crack extension, in line with the emerging trends of JId estimation. Apart from increasing with temperature, both parameters recorded a true transition around 35°C which is attributed to the combined influence of a change in the fracture mode and relaxation of crack tip constraint. Another significant outcome of this investigation concerns about the existence of a minimum crack depth ratio for valid JId determination which, based on a detailed fractographic study, is interpreted in terms of the collective influence of crack tip plasticity and notch constraint.  相似文献   

18.
Ultrafine grained low carbon (0.15 wt.% C) steel produced by equal channel angular pressing (ECAP) was tested for investigating fatigue properties, including cyclic softening and crack growth rate. Emphasis was placed on investigating the effect of load ratio on the fatigue crack growth rates of ultrafine grained microstructure. The ECAPed steel exhibited cyclic softening. After the first cycle, the tension and compression peak stresses decreased gradually with the number of cycles. Fatigue crack growth resistance and the threshold of ECAPed ultrafine grained steel were lower than that of an as-received coarse grained steel. This was attributed to a less tortuous crack path. The ECAPed steel exhibited slightly higher crack growth rates and a lower ΔKth with an increase in R ratio. The R ratio effect on growth rates and ΔKth was basically indistinguishable at a lower load ratio (R>0.3) compared with other alloys, indicating that the contribution of the crack closure vanished. This was explained by the fact that finer grained materials produce a lower opening load Pop due to a relatively less serrated crack path. Consequently, Kmin can reach Kop readily with a smaller increment of load ratio. The crack growth rate curve for the ECAPed ultrafine grained steel exhibited a linear extension to the lower growth rate regime than that for the coarse grained as-received steel. This behavior can be explained by a reverse crack tip plastic zone size (rp) that is always larger than the grain size.  相似文献   

19.
Room temperature fatigue crack growth rate data were generated for Ni-Mo-V (ASTM A469, Cl-4), Cr-Mo-V (ASTM A470, Cl-8) and Ni-Cr-Mo-V (ASTM A471, Cl-4 and a 156,000 psi yield strength grade) rotor forging steels. Testing was conducted with WOL type compact toughness specimens and the results presented in terms of fracture mechanics parameters. Data show that the Ni-Cr-Mo-V steels exhibit slower fatigue crack growth rates at a given stress intensity range (ΔK) than do the Ni-Mo-V steels. In addition, the Cr-Mo-V steel was found to exhibit slower growth rates than the other alloys at ΔK levels below 40 ksi √in but somewhat foster rates at ΔK levels in excess of 45 ksi √in. The fatigue crack growth rate properties of the alloys studied conform to the generalized fracture mechanics crack growth rate law where da/dN = C0ΔKR. It was noted that the fatigue crack growth rate parameters n and C0 tend to decrease and increase, respectively, with increasing material toughness, Kic.  相似文献   

20.
The relationship between fatigue crack propagation rate, da/dn, and range of stress intensity factor, ΔK, including threshold stress intensity factor, ΔKth, is analyzed statistically. A non-linear equation, da/dn = C{(ΔK)m-(ΔKth)m}, is fitted to the data by regression method to evaluate the 99% confidence intervals. Several experimental results on fatigue crack propagation properties of welded joints are compared by using these confidence intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号