首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Marijuana is a widely abused recreational drug well known for its psychoactive properties. Cannabinoids, the active ingredients of marijuana, elicit their neurobehavioral effects by interacting with the CB1 cannabinoid receptor subtype, expressed primarily in the brain but also present in some peripheral tissues. A second receptor subtype, the CB2 receptor, is expressed on cells of the immune system and is thought to be responsible for the immunosuppressant effects of cannabinoids. Recently, endogenous lipidlike substances have been identified, including arachidonyl ethanolamide (anandamide) and 2-arachidonyl glyceride, that bind to cannabinoid receptors and mimic many of the neurobehavioral effects of plant-derived cannabinoids. Both plant-derived cannabinoids and the endogenous ligands have been shown to elicit hypotension and bradycardia via activation of peripherally located CB1 receptors. Possible underlying mechanisms include presynaptic CB1 receptor mediated inhibition of norepinephrine release from peripheral sympathetic nerve terminals, and/or direct vasodilation via activation of vascular cannabinoid receptors. The latter may also be the target of endocannabinoids of vascular endothelial origin. Recent studies indicate that a peripheral endogenous cannabinoid system in circulating macrophages and platelets is activated in hemorrhagic and septic shock and may contribute to the hypotension associated with these conditions via activation of vascular cannabinoid receptors. The potential role of this mechanism in human shock conditions is under investigation.  相似文献   

2.
Recent reports have provided evidence of a link between the endogenous brain cannabinoid system and the endogenous central opioid systems. Here we report that the selective CB1 receptor antagonist SR 141716A induced behavioral and endocrine alterations associated with opiate withdrawal in morphine-dependent animals in a dose-dependent manner and that naloxone induced an opiate withdrawal syndrome in animals made cannabinoid-dependent by repeated administration of the potent cannabinoid agonist HU-210. Additionally CB1 and mu-opioid receptor mRNAs were co-localized in brain areas relevant for opiate withdrawal such as the nucleus accumbens, septum, dorsal striatum, the central amygdaloid nucleus and the habenular complex. These results suggest that CB1 cannabinoid receptors may play a role in the neuroadaptive processes associated with opiate dependence, and they lend further support for the hypothesis of a potential role of cannabinoid receptors in the neurobiological changes that culminate in drug addiction.  相似文献   

3.
Although exogenous cannabinoid ligands such as delta9-tetrahydrocannabinol (THC) have been implicated in reward-related learning and aversion, the hedonic effects of the endogenous cannabinoid agonist anandamide (arachidonylethanolamide) have never been assessed. Thus, the effects of anandamide were tested in a place conditioning task. Male Wistar rats received THC (0.0-8.0 mg/kg) or anandamide (0.0-16.0 mg/kg) during conditioning sessions. The half-life of anandamide was increased by pretreatment with the protease inhibitor phenylmethylsulfonyl fluoride (2.0 mg/kg). A significant place aversion was found at the 1.0 and 1.5 mg/kg doses of THC. No significant place conditioning effects were found with anandamide. Locomotor activity during conditioning was significantly decreased by the 1.0, 1.5, 2.0 and 4.0 mg/kg doses of THC as well as the 8.0 and 16.0 mg/kg doses of anandamide. These results fail to implicate the endogenous cannabinoid anandamide in reward-related learning or aversion.  相似文献   

4.
Cannabinoids have been implicated in a variety of cognitive processes in humans, including attention, learning, memory, and time estimation. However, studies of the effects of cannabinoids on rodent behavior have focused on motor, learning, and memory tasks. To assess cannabinoid effects on time perception, this study examined whether systemically administered cannabinoid receptor agonists and a cannabinoid receptor antagonist influenced rats' performance of a time interval estimation task based on a fixed-interval schedule (a "peak procedure"). Both cannabinoid agonists WIN 55,212-2 and Δ?-tetrahydrocannabinol shortened the modal response time, and cannabinoid antagonist SR 141716A lengthened the modal response time. Secondary measures of the shape of the response distribution were not influenced by any of the drugs, suggesting that the response distribution shifts were not artifacts of drug side effects. Therefore, these experiments argue for the involvement of endogenous cannabinoids in time estimation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
6.
We examined the relative importance of G (Gi) protein-coupled brain-type (CB1-R) and spleen-type (CB2-R) cannabinoid receptors in preimplantation embryo development using agonists and antagonists specific to CB1-R and CB2-R. The results establish that endogenous cannabinoid ligands, anandamide and sn-2 arachidonoylglycerol, arrest embryo development in vitro, and this effect is reversed by CB1-R antagonists SR141716A or AM 251, but not by SR144528, a CB2-R antagonist. A CB2-R selective agonist AM 663 failed to affect embryo development. These results suggest that cannabinoid effects on embryo development are mediated by CB1-R. We also observed that delta9-tetrahydrocannabinol ([-]THC) infused in the presence of cytochrome P450 inhibitors interfered with blastocyst implantation. This adverse effect was reversed by coinfusion of SR141716A. The less active stereoisomer (+)THC plus the inhibitors failed to affect implantation. Analysis of tissue levels demonstrated that uterine accumulation of (-)THC occurred when it was infused in the presence of the P450 inhibitors. These results demonstrate that the uterus and perhaps the embryo have the cytochrome P450 enzymes to metabolize (-)THC and neutralize its adverse effects on implantation. Collectively, the present study demonstrates that cannabinoid effects on embryo development and implantation are mediated by embryonic and/or uterine CB1-R, but not CB2-R.  相似文献   

7.
An endogenous cannabimimetic molecule, 2-arachidonoylglycerol, induces a rapid, transient increase in intracellular free Ca2+ concentrations in NG108-15 cells through a cannabinoid CB1 receptor-dependent mechanism. We examined the activities of 24 relevant compounds (2-arachidonoylglycerol, its structural analogues, and several synthetic cannabinoids). We found that 2-arachidonoylglycerol is the most potent compound examined so far: its activity was detectable from as low as 0.3 nM, and the maximal response induced by 2-arachidonoylglycerol exceeded the responses induced by others. Activities of HU-210 and CP55940, potent cannabinoid receptor agonists, were also detectable from as low as 0.3 nM, whereas the maximal responses induced by these compounds were low compared with 2-arachidonoylglycerol. Anandamide was also found to act as a partial agonist in this assay system. We confirmed that free arachidonic acid failed to elicit a response. Furthermore, we found that a metabolically stable ether-linked analogue of 2-arachidonoylglycerol possesses appreciable agonistic activity, although its activity was apparently lower than that of 2-arachidonoylglycerol. We also confirmed that pretreating cells with various cannabinoid receptor agonists nullified the response induced by 2-arachidonoylglycerol, whereas pretreating cells with other neurotransmitters or neuromodulators did not affect the response. These results strongly suggested that the cannabinoid CB1 receptor is originally a 2-arachidonoylglycerol receptor, and 2-arachidonoylglycerol is the intrinsic physiological ligand for the cannabinoid CB1 receptor.  相似文献   

8.
(Dimethylheptyl)anandamide [(16,16-dimethyldocosa-cis-5,8,11,14-tetraenoyl)ethanolamine ] (17a) and its amide analogs were synthesized by Wittig coupling of a ylide derived from a fragment of arachidonic acid. These amides were compared to the endogenous cannabinoid receptor ligand arachidonylethanolamide (anandamide, 2a) and its amide analogs in pharmacological assays for potential enhancement of cannabimimetic activities. The receptor affinity to rat brain membranes of the dimethylheptyl (DMH) analogs increased by an order of magnitude in most comparisons to the corresponding anandamides in displacement assays versus the cannabinoid agonist [3H]CP 55,940 or antagonist [3H]SR141716A, for which rank order differences in affinity were observed. An order of magnitude enhancement of potency with comparable or higher efficacy in behavioral assays in the mouse tetrad of tests of cannabinoid activity was observed in 17a versus 2a. In contrast, no enhancement in potency for the pentyl to DMH side chain exchange was seen in the mouse vas deferens assay. The data indicate a structural equivalence between classical plant cannabinoids and 2a as well as different receptor-ligand interactions that characterize multiple receptor sites or binding modes.  相似文献   

9.
Astrocytes are an important cell population in the CNS, involved in cytokine homeostasis and participating in a variety of important physiological and pathological processes. In the present study we showed that primary cultures of neonatal mouse cortical astrocytes stimulated with lipopolysaccharide (Balb/c mice strain, LPS: 1 microgram/ml, 18 h) or Theiler's virus, TMEV (SJL/J mice strain, TMEV: 10(5) PFU/well, 24 h) released an increased amount of nitrites (NO2-) and tumour necrosis factor-alpha (TNF-alpha) into the culture medium. Exogenous cannabinoids are known to modulate the function of immune cells. Anandamide, an endogenous ligand for the cannabinoid receptor, blocked the release of NO2- and TNF-alpha induced by LPS in a dose-dependent manner. In TMEV-stimulated astrocytes anandamide also suppressed, in a dose-related manner, the stimulatory effects of TMEV on both NO2- and TNF-alpha. It is suggested that anandamide exerts an immunoregulatory role in the CNS. These results could have important implications in the modulation of immunological and inflammatory processes by cannabinoid agents.  相似文献   

10.
A broad range of therapeutic applications has been suggested for cannabis or its pharmacologically active compound (tetrahydrocannabinol; THC) in many publications. Psychotropic side effects and the anecdotal character of the research have limited the pharmacotherapeutic use of THC until now. Therefore, the Netherlands Health Council recently decided negatively on this matter. Besides several cannabinoid receptor subtypes present in the central nervous system and peripheral tissues endogenous cannabinoids have been detected. These endogenous cannabinoids appear to play an important role in signal transduction, which may be starting points for therapy regarding: cardiovascular diseases, multiple sclerosis and spinal cord disorders. cerebrovascular accident and brain trauma, neurodegenerative diseases, epilepsy, pain management, glaucoma, oncologic and aids-related disorders such as nausea, vomiting and appetite problems.  相似文献   

11.
Anandamide, an endogenous cannabinoid ligand, binds to CB1 cannabinoid receptors in the brain and mimics the neurobehavioural actions of marijuana. Cannabinoids and anandamide also elicit hypotension mediated by peripheral CB1 receptors. Here we report that a selective CB1 receptor antagonist, SR141716A, elicits an increase in blood pressure in rats subjected to haemorrhagic shock, whereas similar treatment of normotensive rats or intracerebroventricular administration of the antagonist during shock do not affect blood pressure. Blood from haemorrhaged rats causes hypotension in normal rats, which can be prevented by SR141716A but not by inhibition of nitric oxide synthase in the recipient. Macrophages and platelets from haemorrhaged rats elicit CB1 receptor-mediated hypotension in normotensive recipients, and incorporate arachidonic acid or ethanolamine into a product that co-elutes with anandamide on reverse-phase high-performance liquid chromatography. Also, macrophages from control rats stimulated with ionomycin or bacterial phospholipase D produce anandamide, as identified by gas chromatography and mass spectrometry. These findings indicate that activation of peripheral CB1 cannabinoid receptors contributes to haemorrhagic hypotension, and anandamide produced by macrophages may be a mediator of this effect.  相似文献   

12.
Anandamide (N-arachidonoylethanolamine) is an endogenous ligand for both the brain-type (CB1-R) and spleen-type (CB2-R) cannabinoid receptors. This investigation demonstrates that the periimplantation mouse uterus contains the highest levels of anandamide (142-1345 pmol/micromol lipid P; 1-7 microg/g wet weight) yet discovered in a mammalian tissue. The levels fluctuate with the state of pregnancy; down-regulation of anandamide levels is associated with uterine receptivity, while up-regulation is correlated with uterine refractoriness to embryo implantation. Anandamide levels are highest during the nonreceptive phase in the pseudopregnant uterus and in the interimplantation sites, and lowest at the site of embryo implantation. The lower levels of uterine anandamide at the implantation sites may be a mechanism by which implanting embryos protect themselves from the detrimental effects of this endogenous ligand. We also observed a reduced rate of zona-hatching of blastocysts in vitro in the presence of anandamide, and inhibition of implantation by systemic administration of a synthetic cannabinoid agonist CP 55,940. These adverse effects were reversed by SR141716A, a specific CB1-R antagonist. Taken together, the results suggest that an aberrant synthesis of anandamide and/or expression of the cannabinoid receptors in the uterus/embryo may account for early pregnancy failure or female infertility.  相似文献   

13.
This study examined the effect of the cannabinoid receptor agonist, WIN 55212-2, on the electrically evoked release of [14C]acetylcholine (ACh) from superfused brain slices from the hippocampus, a region with a high density of cannabinoid receptors. A comparison was also made with [14C]ACh release from the nucleus accumbens, which has relatively fewer cannabinoid receptors. In the hippocampal slices, WIN 55212-2 produced a dose-dependent inhibition of [14C]ACh release, with an EC50 of 0.03 microM and a maximal inhibition of 81% at 1 microM. In the nucleus accumbens slices, WIN 55212-2 produced a weak inhibition of [14C]ACh release, which did not quite reach statistical significance. The inhibition of electrically evoked hippocampal [14C]ACh release by WIN 55212-2 could be prevented by the cannabinoid receptor antagonist, SR 141716A (EC50, 0.3-1.0 microM). In addition to antagonizing the effects of WIN 55212-2, SR 141716A alone produced a 2-fold potentiation of the electrically stimulated [14C]ACh release in this region (EC50, 0.1-0.3 microM). By contrast, in nucleus accumbens slices, no potentiation of the stimulated release of [14C]ACh release by SR 141716A was observed. Basal [14C]ACh release was unaffected by WIN 55212-2 or SR 141716A in either area. These results suggest that cannabinoid receptor activation can produce a strong inhibition of ACh release in the hippocampus. Furthermore, the potentiation of ACh release in the hippocampus by SR 141716A alone suggests either that this compound is an inverse agonist at cannabinoid receptors or it is antagonizing the actions of an endogenous ligand acting on these receptors.  相似文献   

14.
Anandamide is the newly discovered endogenous cannabinoid ligand that binds to brain cannabinoid receptors and shares most, but not all, of the pharmacological properties of delta 9-THC. Therefore, this study was undertaken to determine whether its interaction with the CB1 receptor in brain was identical to that of delta 9-THC. Anandamide depressed spontaneous activity and produced hypothermia, antinociception and immobility in mice after i.v. administration. However, none of these effects was blocked by pretreatment with the selective CB1 antagonist, SR 141716A. However, the metabolically stable analog 2-methyl-2'-fluoroethylanandamide produced reductions in motor activity and antinociception in mice, effects that were blocked by the antagonist. To determine whether anandamide's receptor binding mimicked that of other cannabinoids, an autoradiographic comparison of anandamide, SR 141716A and CP 55,940 competition for [3H]CP55,940 binding was conducted throughout rat brain. The receptor affinities for all three compounds did not change according to brain area. As expected, Bmax values differed dramatically among differ brain areas. However, the Bmax values for each brain area were similar regardless of the compound used for displacement. These data suggest that anandamide, SR 141716A and CP 55,940 compete for the same cannabinoid receptor throughout brain despite SR 141716A's failure to block anandamide's pharmacological effects. Although there is no question that anandamide binds to the cannabinoid receptor, failure of SR 141716A to block its pharmacological effects in mice poses a dilemma. The results presented herein raise the possibility that anandamide may not be producing all of its effects by a direct interaction with the CB1 receptor.  相似文献   

15.
Arachidonylethanolamide (anandamide), an endogenous ligand for the cannabinoid receptor, binds competitively to brain cannabinoid receptors and shares many, but not all, of the in vivo effects of delta9-tetrahydrocannabinol. In this study, the cannabinoid effects of anandamide analogs in which the anandamide molecule was altered were assessed in a drug discrimination model. Structural manipulations of the anandamide molecule included saturation of the arachidonyl moiety with fluorination (O-586), substitution for either the ethanolamide moiety (O-612 and O-595) or C2' hydroxyl (O-585), and addition of a methyl group at various positions (O-610, O-680, and O-689). Despite the low binding affinities of the non-methylated compounds (Ki values > 2000 nM), all of the analogs had previously shown cannabinoid activity in mice. In the present study, these analogs were tested in a more pharmacologically specific delta9-tetrahydrocannabinol discrimination procedure in rats. This animal model is predictive of the subjective effects of marijuana intoxication in humans. Whereas delta9-tetrahydrocannabinol and an aminoakylindole fully substituted for the training dose of 3 mg/kg delta9-tetrahydrocannabinol, anandamide and its non-methylated analogs were not cannabimimetic in this procedure. Methylation appeared to increase binding affinity (Ki values < 150 nM) and efficacy; however, the greatest substitution produced by the methylated analogs occurred only at doses that decreased overall rates of responding, suggesting that these analogs are not fully delta9-tetrahydrocannabinol-like. The rapid metabolism of anandamide and some of its analogs undoubtedly contribute to the differences between the pharmacological profiles of the anandamides and classical cannabinoids. These results support the prediction that the subjective effects of anandamide analogs that have been developed thus far would not be cannabimimetic except at high doses.  相似文献   

16.
The potent analgesic effects of cannabis-like drugs and the presence of CB1-type cannabinoid receptors in pain-processing areas of the brain and spinal cord indicate that endogenous cannabinoids such as anandamide may contribute to the control of pain transmission within the central nervous system (CNS). Here we show that anandamide attenuates the pain behaviour produced by chemical damage to cutaneous tissue by interacting with CB1-like cannabinoid receptors located outside the CNS. Palmitylethanolamide (PEA), which is released together with anandamide from a common phospholipid precursor, exerts a similar effect by activating peripheral CB2-like receptors. When administered together, the two compounds act synergistically, reducing pain responses 100-fold more potently than does each compound alone. Gas-chromatography/mass-spectrometry measurements indicate that the levels of anandamide and PEA in the skin are enough to cause a tonic activation of local cannabinoid receptors. In agreement with this possibility, the CB1 antagonist SR141716A and the CB2 antagonist SR144528 prolong and enhance the pain behaviour produced by tissue damage. These results indicate that peripheral CB1-like and CB2-like receptors participate in the intrinsic control of pain initiation and that locally generated anandamide and PEA may mediate this effect.  相似文献   

17.
Localization of cannabinoid receptor mRNA in rat brain   总被引:1,自引:0,他引:1  
Cannabinoid receptor mRNA was localized in adult rat brain by 35S-tailed oligonucleotide probes and in situ hybridization histochemistry. Labelling is described as uniform or non-uniform depending on the relative intensities of individual cells expressing cannabinoid receptor mRNA within a given region or nucleus. Uniform labelling was found in the hypothalamus, thalamus, basal ganglia, cerebellum and brainstem. Non-uniform labelling that resulted from the presence of cells displaying two easily distinguishable intensities of hybridization signals was observed in several regions and nuclei in the forebrain (cerebral cortex, hippocampus, amygdala, certain olfactory structures). Olfactory-associated structures, basal ganglia, hippocampus, and cerebellar cortex displayed the heaviest amounts of labelling. Many regions that displayed cannabinoid receptor mRNA could reasonably be identified as sources for cannabinoid receptors on the basis of well documented hodologic data. Other sites that were also clearly labelled could not be assigned as logical sources of cannabinoid receptors. The localization of cannabinoid receptor mRNA indicates that sensory, motor, cognitive, limbic, and autonomic systems should all be influenced by the activation of this receptor by either exogenous cannabimimetics, including marijuana, or the yet unknown endogenous "cannabinoid" ligand.  相似文献   

18.
The effect of cannabinoids on the excitatory input to the substantia nigra reticulata (SNr) from the subthalamic nucleus was explored. For this purpose a knife cut was performed rostral to the subthalamic nucleus to isolate the subthalamic nucleus and the SNr from the striatum, a major source of cannabinoid receptors to the SNr. The data showed that the cannabinoid agonist WIN55,212-2 blocked the increase in the firing rate of SNr neurons induced by stimulation of the subthalamic nucleus with bicuculline. Furthermore, the cannabinoid antagonist SR141716A antagonized the effect of the cannabinoid agonist. This study showed that cannabinoids regulate not only the striatonigral pathway, as previously reported, but also the subthalamonigral pathway. The opposite influences of these two inputs to the SNr, inhibitory and excitatory respectively, suggest that endogenous cannabinoids play a major role in the physiological regulation of the SNr.  相似文献   

19.
Arachidonylethanolamide (anandamide), a candidate endogenous cannabinoid ligand, has recently been isolated from porcine brain and displayed cannabinoid-like binding activity to synaptosomal membrane preparations and mimicked cannabinoid-induced inhibition of the twitch response in isolated murine vas deferens. In this study, anandamide and several congeners were evaluated as cannabinoid agonists by examining their ability to bind to the cloned cannabinoid receptor, inhibit forskolin-stimulated cAMP accumulation, inhibit N-type calcium channels, and stimulate one or more functional second messenger responses. Synthetic anandamide, and all but one congener, competed for [3H]CP55,940 binding to plasma membranes prepared from L cells expressing the rat cannabinoid receptor. The ability of anandamide to activate receptor-mediated signal transduction was evaluated in Chinese hamster ovary (CHO) cells expressing the human cannabinoid receptor (HCR, termed CHO-HCR cells) and compared to control CHO cells expressing the muscarinic m5 receptor (CHOm5 cells). Anandamide inhibited forskolin-stimulated cAMP accumulation in CHO-HCR cells, but not in CHOm5 cells, and this response was blocked with pertussis toxin. N-type calcium channels were inhibited by anandamide and several active congeners in N18 neuroblastoma cells. Anandamide stimulated arachidonic acid and intracellular calcium release in both CHOm5 and CHO-HCR cells and had no effect on the release of inositol phosphates or phosphatidylethanol, generated after activation of phospholipase C and D, respectively. Anandamide appears to exhibit the essential criteria required to be classified as a cannabinoid/anandamide receptor agonist and shares similar nonreceptor effects on arachidonic acid and intracellular calcium release as other cannabinoid agonists.  相似文献   

20.
Although many anecdotal reports indicate that marijuana and its active constituent, delta-9-tetrahydrocannabinol (delta-9-THC), may reduce pain sensation, studies of humans have produced inconsistent results. In animal studies, the apparent pain-suppressing effects of delta-9-THC and other cannabinoid drugs are confounded by motor deficits. Here we show that a brainstem circuit that contributes to the pain-suppressing effects of morphine is also required for the analgesic effects of cannabinoids. Inactivation of the rostral ventromedial medulla (RVM) prevents the analgesia but not the motor deficits produced by systemically administered cannabinoids. Furthermore, cannabinoids produce analgesia by modulating RVM neuronal activity in a manner similar to, but pharmacologically dissociable from, that of morphine. We also show that endogenous cannabinoids tonically regulate pain thresholds in part through the modulation of RVM neuronal activity. These results show that analgesia produced by cannabinoids and opioids involves similar brainstem circuitry and that cannabinoids are indeed centrally acting analgesics with a new mechanism of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号