首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ni3Al(Z)合金室温拉伸性能及Zr韧化机制的探讨   总被引:5,自引:0,他引:5  
热处理温度显著影响Ni3Al(Zr)合金的显微组织和室温力学性能。本实验采用SEM,TEM,AES等手段对轧制处理后的试样进行了研究。随着热处理温度升高,再结晶体积百分数增加,再结晶晶粒尺寸增大,室温拉伸强度降低。但室温拉伸塑性随热处理温度升高而增加,在850℃热处理时达到最大值,然后随热处理温度升高而显著降低。俄歇能谱(AES)研究表明Zr在850℃热处理时的晶界偏聚量明显高于1100℃热处理时的偏聚量,说明Zr在室温的塑化作用与其在晶界的分布有关。  相似文献   

2.
Zr,Cr和B对Ni3Al合金组织和力学性能的影响   总被引:4,自引:0,他引:4  
本文研究了含Zr(0—0.6at.-%),Cr(0—7.7at.-%)和B(0—2.22at.-%)的Ni_3Al合金的组织和室温至1050℃拉伸性能。结果表明,Ni_3Al合金的屈服强度随温度升高而增加,表现出反常的温度关系。到达峰值后,随温度升高,屈服强度降低。Zr和Zr+Cr在整个试验温度范围都增加Ni_3Al合金的屈服强度,并改善高温抗张强度和塑性。硼增加Ni_3Al合金的抗张强度和屈服强度,同时改善塑性。但当硼含量超过1.37at.-%时,则降低强度和塑性。当硼含量超过溶解度极限时,Ni_3Al合金中形成岛状和球状的Ni_(20)Al_3B_6和Ni_3Al的共晶组织,对强度和塑性都是有害的。  相似文献   

3.
再结晶Ni3Al(Zr)合金的环境脆性   总被引:1,自引:0,他引:1  
研究了不同程度再结晶的Ni3Al(Zr)合金在真空和空气中的室温拉伸性能.结果表明,随着再结晶程度的增加,合金的塑性先增加后降低,不完全再结晶的样品表现出良好的拉伸塑性.合金的环境敏感指数随再结晶程度的增加而增加,完全再结晶的样品表现出强烈的环境敏感性.真空和空气中拉伸断口形貌的变化与力学性能变化趋势一致,再结晶程度低的样品的断口形貌为穿晶解理断裂,气氛对其几乎没有影响,而对再结晶程度高和完全再结晶的样品,空气使其沿晶断裂模式倾向增加.  相似文献   

4.
通过组织分析和常温拉伸性能测试,研究了Ce、Zr复合添加对Al-4. 6Cu-0. 9Li合金组织与拉伸性能的影响。结果表明,微量Ce、Zr复合添加有利于阻止Al-Cu-Li合金再结晶以及较大幅度的细化合金晶粒组织(由70μm至20μm);微量Ce、Zr复合添加虽然不改变Al-Cu-Li合金的时效析出序列,但在提高合金整体强度的同时,进一步提高了合金的塑性。分析表明,合金强度的提高主要归因于微量Ce、Zr复合添加引入的Al_3Zr弥散强化作用,而细化的晶粒和残留相Al Cu Ce Zr粒子尺寸则促进了合金塑性的整体提高。  相似文献   

5.
针对名义成分为Ti-46Al-3.8(V,Cr,Ni) (at%)的挤压TiA1合金,研究了热处理工艺对高温时β相含量、形貌的影响,利用高温时β相对α相晶粒的钉扎作用获得了层片团尺寸均匀、细小的全层片组织,测试了具有该组织合金的拉伸性能.结果表明,在1320~1370℃范围内,随保温温度的升高,β相含量逐渐增加,使得合金的晶粒尺寸逐渐减小.实验合金经1340℃/5 min/AC热处理后可以获得层片团(尺寸平均为65 μm),B2相弥散分布的全层片组织.该组织的室温及高温拉伸性能均较好.少量B2相对合金的室温塑性无不利影响,对合金的高温强度可能有一定贡献.  相似文献   

6.
用弯曲法和拉伸法测定Ti-22Nb-6Zr(at%)合金的超弹性和形状记忆效应,研究固溶处理温度对Ti-22Nb-6Zr合金组织结构及性能的影响。结果表明:固溶处理后Ti-22Nb-6Zr合金的室温组织为单一的β相,晶粒尺寸随固溶处理温度升高而增大;合金的静态弹性模量小于30GPa;Ti-22Nb-6Zr合金具有良好的超弹性和一定的形状记忆效应。室温下变形,合金的超弹性和形状记忆效应随固溶处理温度升高而提高。900℃固溶处理后的合金在室温下拉伸变形,应变为5%时,总的最大回复应变达4.12%,其中超弹性回复应变为3.91%,记忆回复应变为0.21%。  相似文献   

7.
TiAl合金已成为航空航天工程升级换代的关键材料,然而其铸态晶粒尺寸粗大,室温塑性和强度低,限制其进一步工程应用。本文采用真空感应凝壳熔炼工艺系制备铸锭,系统研究TiB2和Ni元素共同添加对Ti-48Al-2Cr-2Nb合金凝固组织和力学性能的影响。结果表明,TiB2及Ni合金化后,合金的凝固路径和初生相并未改变,晶粒尺寸从700μm细化至100μm,生成片状TiB2和富镍τ3相。T4822-( Ni, TiB2)合金的室温拉伸强度与基体合金相近,断裂伸长率提高30%。700-900℃时,T4822-(Ni, TiB2)合金的抗拉强度始终高于基体合金,在900℃时抗拉强度达到365MPa,较基体合金提高9%。800℃和900℃时T4822-(Ni, TiB2)合金的断裂伸长率分别达到25.3%和36.1%,远高于基体合金。晶粒尺寸的细化和晶界处的块状γ相是T4822-(Ni, TiB2)合金塑性提升的主要原因,其良好的高温强度则可以归因于片层团内部和界面处的硬质硼化物和富镍τ3相。  相似文献   

8.
利用光学显微镜、透射电镜、扫描电镜以及电子背散射衍射研究了Fe13Cr5Al1.5Nb合金的高温下微观组织演化特征。选择模拟事故工况温度区间(800~1000℃)对合金进行热处理实验,研究热处理温度和时间对晶粒尺寸及第二相析出行为的影响规律。采用EBSD分析统计了晶粒尺寸的变化。研究了800℃×20 h热处理后材料在室温至800℃的拉伸性能并观察分析了拉伸断口特征。结果表明,冷轧/热轧合金中弥散分布着高温稳定性良好的细小析出相(Fe2Nb相),且其周围分布着高密度位错。在800℃热处理5~25 h过程中,FeCrAl基合金的晶粒尺寸保持了良好的热稳定性,合金的晶粒尺寸都比较细小,平均晶粒尺寸约2μm。高于900℃时,合金中大量第二相固溶于基体,部分第二相显著粗化。低于260℃时,断口形貌表现为微孔型塑性断裂,呈现典型的细小蜂窝状等轴韧窝;提高到600~800℃时,合金出现超塑性特点。  相似文献   

9.
Sc和Zr复合微合金化对Al-Zn-Mg-Cu合金组织与性能的影响   总被引:4,自引:0,他引:4  
采用水冷铜模一激冷铸造法,制备了三种Sc和Zr含量不同的Al-Zn-Mg-Cu合金薄板材,测试了合金经120℃时效不同时间后的拉伸性能,利用光学显微镜和透射电子显微镜观察了合金的显微组织。结果表明:采用Sc和Zr复合微合金化可明显细化合金的铸态晶粒组织,抑制合金的再结晶,大大提高合金的强度;Sc含量越高,晶粒细化效果越好,合金强度提高也越大;微量Sc和Zr在Al-Zn-Mg-Cu合金中主要以Al3(Sc,Zr)质点的形式存在,初生Al3(Sc,Zr)粒子是在合金凝固过程中形成的,主要起非均质形核的作用,次生Al3(Sc,Zr)粒子是合金在均匀化处理和后续热处理中析出的,起亚结构强化和直接析出强化作用。  相似文献   

10.
针对5E83合金(Er、Zr微合金化5083合金),采用超塑性拉伸试验、扫描电镜(SEM)、电子背散射衍射(EBSD)和透射电镜(TEM),探究了Er、Zr微合金元素、晶粒尺寸、变形温度、应变速率对合金超塑性的影响。通过再结晶退火、空冷和水冷的搅拌摩擦加工(FSP),分别获得了晶粒尺寸为7.4、5.2、3.4μm的完全再结晶组织,作为初始状态进行超塑性拉伸。结果表明,初始晶粒尺寸越细小,超塑性伸长率越高。当晶粒尺寸>5μm时,超塑性变形过程晶粒粗化缓慢,细化初始晶粒可显著提高超塑性;而当晶粒尺寸<5μm时,超塑性变形过程晶粒粗化严重,进一步细化初始晶粒对超塑性的提高有限。不同变形温度、应变速率的超塑性拉伸结果显示在变形温度为450~540℃、应变速率为1.67×10-4~1.67×10-1 s-1,超塑性伸长率随变形温度和应变速率的提高呈现先上升后下降再上升的趋势;变形温度为520℃、应变速率为1.67×10-3 s-1条件下,水冷FSP态合金获得最大伸长率330%...  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号