首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By growing the InGaAs active layer at temperatures lower than in conventional growth, we extended the lasing wavelength and presented the high reliability in InGaAs strained-quantum-well laser diodes. Equivalent I-L characteristics were obtained for 1.02-, 1.05-, and 1.06-/spl mu/m laser diodes with a cavity length of 1200 /spl mu/m. Maximum output power as high as 800 mW and fundamental transverse mode operation at up to 400 mW were obtained at 1.06 /spl mu/m and an 1800-/spl mu/m cavity. Stable operation was observed for over 14 000 h under auto-power-control of 225 mW at 50/spl deg/C for the 1.02-, 1.05-, and 1.06-/spl mu/m lasers with a 900-/spl mu/m cavity.  相似文献   

2.
Optimized second-harmonic generation (SHG) in quantum cascade (QC) lasers with specially designed active regions is reported. Nonlinear optical cascades of resonantly coupled intersubband transitions with giant second-order nonlinearities were integrated with each QC-laser active region. QC lasers with three-coupled quantum-well (QW) active regions showed up to 2 /spl mu/W of SHG light at 3.75 /spl mu/m wavelength at a fundamental peak power and wavelength of 1 W and 7.5 /spl mu/m, respectively. These lasers resulted in an external linear-to-nonlinear conversion efficiency of up to 1 /spl mu/W/W/sup 2/. An improved 2-QW active region design at fundamental and SHG wavelengths of 9.1 and 4.55 /spl mu/m, respectively, resulted in a 100-fold improved external linear-to-nonlinear power conversion efficiency, i.e. up to 100 /spl mu/W/W/sup 2/. Full theoretical treatment of nonlinear light generation in QC lasers is given, and excellent agreement with the experimental results is obtained. For the best structure, a second-order nonlinear susceptibility of 4.7/spl times/10/sup -5/ esu (2/spl times/10/sup 4/pm/V) is calculated, about two orders of magnitude above conventional nonlinear optical materials and bulk III-V semiconductors.  相似文献   

3.
Stripe-width and cavity length dependencies of high-temperature performances of 1.3-/spl mu/m InGaAsP-InP well-designed buried-heterostructure strained multiquantum-well (MQW) lasers were investigated. The threshold currents as low as 4.5/10.5 mA and slope efficiencies as high as 0.48/0.42 mW/mA at 25/spl deg/C/85/spl deg/C were obtained in the MQW lasers with 1.5-/spl mu/m width, 250-/spl mu/m length, and 0.3/0.85 facet reflectivity. With temperature increasing from 25/spl deg/C to 85/spl deg/C, the MQW lasers exhibited lower output power degradation, the minimum value was 1.78 dB at an operation current of 45 mA. The MQW lasers were suitable for application in optical access networks.  相似文献   

4.
We report the first demonstration of a high-power semiconductor optical amplifier (SOA) based on the slab-coupled optical waveguide concept. This concept allows the realization of SOAs having large fundamental optical modes, low loss, and small optical confinement factor. These attributes support large output saturation power, long length for efficient heat removal, and direct butt-coupling to single-mode fibers. The 1.5-/spl mu/m InGaAsP-InP quantum-well amplifier described here has a length of 1 cm, 1/e/sup 2/ intensity widths of 4 /spl mu/m (vertical) and 8 /spl mu/m (horizontal), a fiber-to-fiber gain of 13 dB, and a fiber-coupled output saturation power of 630 mW (+28 dBm). The measured butt-coupling efficiency between the amplifier and SMF-28 is 55%. Thus, the output saturation power of the amplifier itself is approximately 1.1 W (+31 dBm).  相似文献   

5.
Operation of type-II interband cascade lasers in the 4.3-4.7-/spl mu/m wavelength region has been demonstrated at temperatures up to 240 K in pulsed mode. These lasers fabricated with 150-/spl mu/m-wide mesa stripes operated in continuous-wave (CW) mode up to a maximum temperature of 110 K, with an output power exceeding 30 mW/f and a threshold current density of about 41 A/cm/sup 2/ at 90 K. The maximum CW operation temperature of 110 K is largely limited by the high specific thermal resistance of the 150-/spl mu/m-wide broad area lasers. A 20-/spl mu/m-wide mesa stripe laser was able to operate in CW mode at higher temperatures up to 125 K as a result of the reduced specific thermal resistance of a smaller device.  相似文献   

6.
Calculations show that significant optical scattering loss persists as standard quarter-wave (800 /spl Aring/) thick, dielectrically apertured vertical cavity laser diameters are reduced below 4 /spl mu/m and that thinner apertures can reduce the scattering loss, By using a thin (300 /spl Aring/) AlAs-oxide defined aperture, optical scattering loss has been dramatically reduced over the quarter-wave AlAs-oxide defined vertical-cavity laser. The optical loss reduction results in 2.3 /spl mu/m diameter lasers with differential efficiencies of 0.43 (80% of the value of broad-area lasers) and continuous-wave single-mode powers of 1.2 mW.  相似文献   

7.
Distributed-feedback (DFB) buried-heterostructure (BH) lasers with quantum-well active region emitting at 2.0 /spl mu/m have been fabricated and characterized. The lasers with four wells showed performance of practical use: threshold current as low as 15 mA for 600-/spl mu/m-long devices and CW single-mode output up to 5 mW at 2.03 /spl mu/m under operation current of 100 mA were observed. The current- and temperature-tuning rates of DFB mode wavelength are 0.004 nm/mA and 0.125 nm/K, respectively.  相似文献   

8.
Strain-compensated InGaAsSb-AlGaAsSb quantum-well (QW) lasers emitting near 2.5 /spl mu/m have been grown by solid-source molecular beam epitaxy. The relatively high arsenic composition causing a tensile strain in the Al/sub 0.25/GaAs/sub 0.08/Sb barriers lowers the valence band edge and the hole energy level, leading to an increased hole confinement and improved laser performance. A 60% external differential efficiency in pulsed mode was achieved for 1000-/spl mu/m-long lasers emitting at 2.43 /spl mu/m. A characteristic temperature T/sub 0/ as high as 163 K and a lasing-wavelength temperature dependence of 1.02 nm//spl deg/C were obtained at room temperature. For 2000 /spl times/ 200 /spl mu/m/sup 2/ broad-area three-QW lasers without lateral current confinement, a low pulsed threshold of 275 A/cm/sup 2/ was measured.  相似文献   

9.
We describe the nearly-planar processing of two-dimensional vertical cavity laser arrays based on the selective conversion of AlAs to Al/sub x/O/sub y/. The individual lasers of 8/spl times/8 and 2/spl times/2 arrays are defined by native Al/sub x/O/sub y/ to achieve 4-/spl mu/m square active regions on 12-/spl mu/m center-to-center spacings. Interelement thermal coupling is characterized along with the optical mode structure.  相似文献   

10.
GaInAsSb-AlGaAsSb multiple quantum-well (QW) lasers with an emission wavelength of 2.81 /spl mu/m are reported. The ridge waveguide lasers with highly strained QWs show continuous-wave laser emission up to 25/spl deg/C; in pulsed mode, the lasers operate up to 60/spl deg/C. For pulsed operation, a threshold current density of 360 A/cm/sup 2/ is found for devices with 30-/spl mu/m stripe width and 2-mm cavity length at room temperature. A low threshold current density at infinite length of 248 A/cm/sup 2/ is derived.  相似文献   

11.
Grating-coupled surface-emitting semiconductor lasers have been integrated with focusing and spot array generating diffractive beam-forming elements. The lasers have an unstable resonator producing a 160-/spl mu/m-wide single spatial mode. The area of the outcoupler element is 160 /spl mu/m/spl times/240 /spl mu/m. For an outcoupler focusing at 500 /spl mu/m above the surface the spot size is 9 /spl mu/m/spl times/17 /spl mu/m The spot size is primarily limited by aberrations in the wavefront of the guided mode.  相似文献   

12.
Short-wavelength (/spl lambda/<4 /spl mu/m) GaInAs-AlAsSb quantum cascade (QC) lasers have been demonstrated using a "bound-to-continuum" design for the purpose of reducing the electric injection power density. As a result, we have reduced the low-temperature electric injection power density of the lasers by 40%, compared to that of GaInAs-AlAsSb QC lasers emitting at the same wavelength but adopting a triple-quantum-well design. The lasers in the present report can operate up to room temperature (300 K) in pulsed mode, emitting at short-wavelength /spl lambda//spl sim/3.7-3.9 /spl mu/m.  相似文献   

13.
We present the first continuous-wave (CW) edge-emitting lasers at 1.5 /spl mu/m grown on GaAs by molecular beam epitaxy (MBE). These single quantum well (QW) devices show dramatic improvement in all areas of device performance as compared to previous reports. CW output powers as high as 140 mW (both facets) were obtained from 20 /spl mu/m /spl times/ 2450 /spl mu/m ridge-waveguide lasers possessing a threshold current density of 1.06 kA/cm/sup 2/, external quantum efficiency of 31%, and characteristic temperature T/sub 0/ of 139 K from 10/spl deg/C-60/spl deg/C. The lasing wavelength shifted 0.58 nm/K, resulting in CW laser action at 1.52 /spl mu/m at 70/spl deg/C. This is the first report of CW GaAs-based laser operation beyond 1.5 /spl mu/m. Evidence of Auger recombination and intervalence band absorption was found over the range of operation and prevented CW operation above 70/spl deg/C. Maximum CW output power was limited by insufficient thermal heatsinking; however, devices with a highly reflective (HR) coating applied to one facet produced 707 mW of pulsed output power limited by the laser driver. Similar CW output powers are expected with more sophisticated packaging and further optimization of the gain region. It is expected that such lasers will find application in next-generation optical networks as pump lasers for Raman amplifiers or doped fiber amplifiers, and could displace InP-based lasers for applications from 1.2 to 1.6 /spl mu/m.  相似文献   

14.
We have obtained pulsed lasing operation in 2-5-/spl mu/m diameter microdisk injection lasers using GaInAsP-InP compressively-strained multiple-quantum-well (MQW) wafers around room temperature. The effective cavity volume of the 2-/spl mu/m-diameter device is the smallest among those for any type of electrically-pumped lasers. The threshold current of this device was as low as 0.2 mA. Cavity modes in emission spectra observed under CW conditions coincide well with theoretically predicted whispering gallery modes. Further reduction of diameter to less than 1.5 /spl mu/m will realize the condition for spontaneous emission almost coupling into a single mode, which results in thresholdless lasing operation.  相似文献   

15.
The influence of energy-transfer upconversion (ETU) between neighboring ions in the upper and lower laser levels of erbium 3-/spl mu/m continuous-wave lasers on heat generation and thermal lensing is investigated. It is shown that the multiphonon relaxations following each ETU process generate significant heat dissipation in the crystal. This undesired effect is an unavoidable consequence of the efficient energy recycling by ETU in erbium 3-/spl mu/m crystal lasers, but is further enhanced under nonlasing conditions. Similar mechanisms may affect future erbium 3-/spl mu/m fiber lasers. In a three-dimensional finite-element calculation, excitation densities, upconversion rates, heat generation, temperature profiles, and thermal lensing are calculated for a LiYF/sub 4/:Er/sup 3+/ 3-/spl mu/m laser. In the chosen example, the fraction of the absorbed pump power converted to heat is 40% under lasing and 72% under nonlasing conditions. The heat generation in a LiYF/sub 4/:Er/sup 3+/ 3-/spl mu/m laser is 1.7 and the thermal-lens power up to 2.2 times larger than in a LiYF/sub 4/:Nd/sup 3+/ 1-/spl mu/m laser under equivalent pump conditions, thus, also putting a higher risk of rod fracture on the erbium system.  相似文献   

16.
We present the first room-temperature continuous-wave operation of high-performance 1.06-/spl mu/m selectively oxidized vertical-cavity surface-emitting lasers (VCSEL's). The lasers contain strain-compensated InGaAs-GaAsP quantum wells (QW's) in the active region grown by metalorganic vapor phase epitaxy. The threshold current is 190 /spl mu/A for a 2.5/spl times/2.5 /spl mu/m/sup 2/ device, and the threshold voltage is as low as 1.255 V for a 6/spl times/6 /spl mu/m/sup 2/ device. Lasing at a wavelength as long as 1.1 /spl mu/m was also achieved. We discuss the wavelength limit for lasers using the strain-compensated QW's on GaAs substrates.  相似文献   

17.
Coupled vertical cavity surface-emitting laser (VCSEL) arrays are an attractive means to increase the coherent output power of VCSELs. Single-mode VCSELs, with output powers greater than 10 mW, would be useful as telecommunication transmitters /spl lambda/=1.3-1.55 /spl mu/m) or sources for optical interconnects. Commercially available single-mode VCSELs, even at shorter wavelengths /spl lambda/=0.85 /spl mu/m), are generally limited to a few milliwatts of output power. The conventional VCSEL structure incorporates a built-in positive-index waveguide, designed to support a single fundamental mode. Promising results in the 3-5 mW range (/spl lambda/=0.85 /spl mu/m) have been obtained from wet-oxidized, positive-index-guided VCSELs with small emission apertures (less than 3.5 /spl mu/m-dia). The small aperture size leads to a high electrical resistance and high current density, which can impact device reliability. By contrast, antiguided VCSEL structures have shown promise for achieving larger aperture single-mode operation. To obtain high single-mode powers with a larger emitting aperture, the use of a negative-index guide (antiguide) is beneficial. This paper discusses antiguided structures and some of their advantages when incorporated in 2-D VCSEL array structures.  相似文献   

18.
The authors demonstrate a novel high brightness single-lateral mode ridge laser using quantum well intermixing to form a buried heterostructure. Increased discrimination between the fundamental and higher order modes can be achieved using the buried heterostructure to reduce the width of the gain section, enhancing fundamental mode operation. This allows the ridge width to be increased while maintaining fundamental mode operation, hence reducing the optical intensity at the facet and increasing the optical power before mirror degradation. Standard and novel buried heterostructure ridge lasers of 5-/spl mu/m width are compared; far-field beam profiles clearly show improved modal stability for the novel structure.  相似文献   

19.
The reflective self-organized lightwave network (R-SOLNET) enables the formation of self-aligned waveguides in the photorefractive (PR) material between misaligned optical devices by introducing a write beam. The incident write beam from one device and the reflected write beam from the second device induce self-focusing in the PR material and construct a coupling waveguide. A wavelength filter on the waveguide edge is used to facilitate the reflected beam. The beam propagation method reveals that R-SOLNET exhibits higher coupling efficiencies and better tolerances than the one-beam-writing SOLNET and the free-space coupling. The apparent usefulness of R-SOLNET is remarkable for gaps wider than 100 /spl mu/m in 8-/spl mu/m-wide waveguide circuits. For 240-/spl mu/m gap, coupling efficiency better than 50% can be achieved even when the lateral misalignment is as large as 4 /spl mu/m. The results indicate that R-SOLNET may be useful for vertical waveguide constructions of optical z-connections in three-dimensional intrachip optical interconnects and switching systems, as well as for self-aligned optical couplings with devices that cannot emit write beams such as vertical-cavity surface-emitting lasers, photodetectors, and electrooptic switches.  相似文献   

20.
The group refractive index dispersion in ultra-broad-band quantum cascade (QC) lasers has been determined using Fabry-Perot spectra obtained by operating the lasers in continuous wave mode below threshold. In the wavelength range of 5-8 /spl mu/m, the global change of the group refractive index is as small as +8.2 /spl times/ 10/sup -3/ /spl mu/m/sup -1/. Using the method of Hakki and Paoli (1975), the subthreshold gain of the lasers has furthermore been measured as a function of wavelength and current. At the wavelength of best performance, 7.4 /spl mu/m, a modal gain coefficient of 16 cm/spl middot/kA/sup -1/ at threshold and a waveguide loss of 18 cm/sup -1/ have been estimated. The gain evolution confirms an earlier assumption that cross-absorption restricted laser action to above 6 /spl mu/m wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号