首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过实验对反应温度、反应时间、链转移剂、引发体系等因素对超高浓度聚羧酸系减水剂分散性能的影响进行了研究。结果表明,使用维生素C-双氧水氧化还原引发体系[n(H2O2)∶n(Vc)=4∶1],H2O2用量为大单体的1.5%,磷酸三钠用量为大单体的1.2%,SMAS用量为大单体的6%,在室温(20~40℃)条件下反应3 h,合成的超高浓度(质量浓度80%)聚羧酸系减水剂的分散性能优良。当减水剂折固掺量为0.20%、水灰比为0.29时,水泥净浆流动度可达285 mm,60 min净浆流动度为288 mm,120 min净浆流动度为282 mm,流动度经时损失小;同时其混凝土应用性能良好,减水率达30%。  相似文献   

2.
木质素磺酸盐改性聚羧酸减水剂的合成   总被引:1,自引:0,他引:1  
采用自由基共聚法,将大单体聚乙二醇单甲醚甲基丙烯酸酯(MPA)、木质素磺酸钠(LS)、丙烯酸(AA)和甲基丙烯磺酸钠(MAS)4种单体进行共聚,合成木质素磺酸盐改性聚羧酸减水剂。在n(AA)∶n(MPA)∶n(MAS)=5.0∶1.0∶1.0,引发剂用量为2.5%,LS用量为9%,反应温度80℃和反应时间为5 h的条件下合成的减水剂,掺量为0.2%、水灰比为0.29时,掺减水剂水泥净浆初始流动度达290 mm、30 min经时流动度为285 mm,流动度保持性良好。减水剂PC-LS掺量为0.4%时,砂浆的减水率达30%。  相似文献   

3.
选用丙烯酰胺(AM)、二甲基二烯丙基氯化铵(DMDACC)、丙烯酸(AA)、甲基丙烯酸二甲氨乙酯(DMAEMA)为单体,甲基丙烯磺酸钠(SMAS)为链转移剂,过硫酸铵(APS)和抗血坏酸(Vc)为引发剂,通过水溶液自由基聚合,合成了一种聚羧酸抗泥剂。以内掺膨润土的水泥净浆流动度为评价指标,通过正交试验和单因素实验对工艺进行优化。试验结果表明,最佳合成工艺为:n(AA)∶n(DMDACC)∶n(AM)∶n(SMAS)=3.6∶1.4∶2.5∶0.5,反应温度为65℃,引发剂用量为单体总质量的6%。在此条件下合成的抗泥剂,可显著提高聚羧酸减水剂的抗泥性能。在膨润土掺量为5%、聚羧酸减水剂掺量为0.15%时,掺0.05%抗泥剂前后的水泥净浆流动度分别为270 mm和205 mm。  相似文献   

4.
聚羧酸减水剂的合成条件对水泥净浆流动度的影响   总被引:1,自引:0,他引:1  
赵苏  吴娇颖  富尔康 《混凝土》2012,(5):44-46,49
讨论合成条件对水泥净浆流动度的影响,确定适宜的合成条件。试验表明:引发剂用量达到大单体质量的6.8%,大单体、顺丁烯二酸酐、甲基丙烯磺酸钠和丙烯酰胺的质量比为1∶0.235∶0.100∶0.027,反应温度约为80℃,反应时间为6~7 h,制备出了水泥净浆流动度为280 mm、分散性能较好的聚羧酸减水剂。红外光谱表明,聚羧酸减水剂分子中包含羟基(-OH)、磺酸基(-SO-3),羧基(-COOH)、酰胺基(-CONH2)、醚基(-O-)等特征官能团,说明特征官能团对聚羧酸减水剂的性能起着重要作用。  相似文献   

5.
以2-丙烯酰氧基-1,2,3-三羧基丙烷(ACP)、丙烯酸(AA)、丙烯酸聚乙二醇单甲醚酯(MPA)和甲基丙烯磺酸钠(MAS)为单体,过硫酸铵(APS)为引发剂,采用水溶液共聚法合成柠檬酸改性四元聚羧酸系减水剂。实验结果表明,改性聚羧酸减水剂的最优合成条件为:反应温度90℃,反应时间5 h,APS用量为单体总质量的2.5%,在单体配比为n(ACP)∶n(AA)∶n(MPA)∶n(MAS)=0.47∶3.5∶1.2∶1.0,所合成减水剂的减水率高达31%,2 h内水泥净浆流动度基本无损失。  相似文献   

6.
采用丙烯酸羟乙酯与酒石酸进行酯化,将酯化产物(M)与丙烯酸(AA)、甲基烯丙基聚氧乙烯醚(TPEG)、2-丙烯酰胺-2-甲基丙烷磺酸(AMPS)在引发剂过硫酸铵作用下进行共聚,合成了一种缓释型聚羧酸系减水剂。探讨了单体摩尔比、催化剂用量、酯化温度、带水剂等因素对酯化反应的影响,考察了酯化产物M对丙烯酸AA替代量对水泥净浆流动性的影响。结果表明:酯化反应的最佳条件为:n(酒石酸)∶n(丙烯酸羟乙酯)=1∶5,酯化温度85℃,催化剂对甲苯磺酸掺量3%,带水剂环己烷用量为反应物总质量的40%;将合成的酯化产物M部分替代AA进行减水剂的合成,最佳单体比例为:n(AA)∶n(TPEG)∶n(AMPS)∶n(酯化产物M)=1.25∶1.00∶0.27∶2.00;当合成的聚羧酸减水剂掺量为0.3%时,水泥净浆初始流动度为245.0 mm、1 h流动度为207.5 mm、2 h流动度为225.0 mm,制备的聚羧酸减水剂具有良好的缓释功能。  相似文献   

7.
以异丁烯醇聚氧乙烯醚(HPEG)、丙烯酸(AA)为主要聚合单体,甲基丙烯酸羟乙酯(HEA)部分取代AA,巯基丙酸(MPA)为链转移剂,通过双氧水(H_2O_2)-抗坏血酸(Vc)引发,采用一步合成方法 ,在低温条件下制备了一种缓释型聚羧酸减水剂。研究分析了反应温度、酸醚比、HEA取代量、MPA用量、H_2O_2与Vc摩尔比、滴加时间等因素对合成减水剂产品性能的影响。利用正交试验,筛选出低温条件下较优的合成工艺:反应温度40℃,n(AA)∶n(HPEG)=4∶1,n(HEA)∶n(HPEG)=4.38:1,MPA用量(按HPEG单体质量分数计,下同)为0.65%,引发剂用量为1.17%,n(H_2O_2)∶n(Vc)=2.5∶1,滴加时间3h。当减水剂折固掺量为0.22%时,水泥初始净浆流动度达到280mm,0.5h后净浆流动度达到295mm,1h后净浆流动度达到302mm,相同掺量下与其他减水剂产品相比具有更好的分散性和分散保持性,且胶砂减水率达到37.5%。此外,通过傅里叶红外(FTIR)和热重分析(TGA)等手段对共聚物进行了表征。  相似文献   

8.
以异戊烯醇聚氧乙烯醚(TPEG2400)、丙烯酸(AA)和甲基丙烯酰氧乙基三甲基氯化铵(DMC)为单体,过氧化氢(H2O2)/抗坏血酸(Vc)为引发剂,3-巯基丙酸(3-MPA)为链转移剂,合成了两性聚羧酸减水剂。以水泥净浆流动度为评价指标,确定最优单体摩尔比为n(TPEG2400)∶n(AA)∶n(DMC)=1.0∶3.2∶0.3。测试结果表明,当水灰比为0.29、两性聚羧酸减水剂折固掺量为水泥质量的0.13%时,水泥净浆初始流动度为275 mm,60 min流动度为245 mm,具有较好的分散性和分散保持性。当水泥中膨润土含量达2%,减水剂折固掺量为0.13%时,APC2具有较好的抗泥性,且具有良好的分散保持性能。  相似文献   

9.
含乙烯基苯磺酸钠单体聚羧酸减水剂的合成   总被引:4,自引:0,他引:4  
本文以丙烯酸(AA),甲基丙烯酸甲酯(MMA),对乙烯基苯磺酸钠(p-VBS)为主要原料,以过硫酸铵为引发剂,采用水溶液聚合的方法合成了一种聚羧酸系减水剂。通过正交试验,以净浆流动度为主要指标,分析得出了原料的最佳配比AA∶MMA∶p-VBS=1.2∶2∶1,反应时间为6小时。加大引发剂用量可以提高水泥的净浆流动度,加料方式对转化率及产物的性能有较大影响,采用混合单体和引发剂溶液同时滴加得到产物的净浆流动度较大。  相似文献   

10.
本文研究不同酸醚比、氧化剂用量、链转移用量合成母液对水泥净浆流动度的影响,确定最佳工艺参数,制备出高保坍减水型的聚羧酸减水剂(编号TS-J18),并通过水泥净浆流动度、混凝土扩展度对比市场上不同的母液外样,评价优越性。试验结果表明:制备出的高保坍减水型聚羧酸减水剂,通过水泥净浆流动度、混凝土扩展度对比性能明显优于市场外样,具有减水率大、保坍性能好的特点。  相似文献   

11.
以甲基丙烯酸(MAA)、甲氧基聚乙二醇甲基丙烯酸酯(MAAMPEA)和甲基丙烯酸磺酸钠(SMAS)为主要单体,以过硫酸铵(APS)为引发剂合成聚羧酸减水剂,对其原料配合比、合成工艺参数与水泥净浆流动度、混凝土性能之间的关系进行试验.研究结果表明:当HMMME1300与MAA的摩尔比值为4、MAA:SAMS的摩尔比值为10、APS用量为反应物总量的2.5%的原料配合比下,在反应温度为85~90℃、单体滴加时间为3h时,合成的聚羧酸减水剂对水泥有良好的分散性能和分散保持性能,对混凝土性能有显著的提高;单体滴加完毕后的稳定工艺,对提高减水剂储存稳定性有很大的帮助.  相似文献   

12.
马来酸型聚羧酸减水剂的合成研究   总被引:8,自引:1,他引:7  
以马来酸酐、聚乙二醇为原料.通过酯化反应.合成出聚乙二醇单乙醚马来酸单酯活性大单体.确定出最俸反应条件为:原料摩尔配合比为1:1.5,非氧化性对甲基苯磺酸催化剂的用量为0.5%,温度为90℃.反应时间为6 h,合成出活性大单体的酯化率达到92.2%.试验结果表明:采用聚乙二醇单乙醚马来酸酐单酯活性大单体、对乙烯基苯磺酸钠和甲基丙烯酸为原料,最佳摩尔配合比为1.0:1.5:4.0时,制备出高效马来酸型聚羧酸减水剂.当高效减水剂的掺量为0.5%.产物的减水性能及净浆流动度保持性能良好,水泥初始净浆流动度达到295 mm、60 min净浆流动度维持在260 mm;可使水泥的用水量减少28%.  相似文献   

13.
以端烯基双尾聚氧乙烯醚为原料合成一种端烯基双尾聚氧乙烯醚聚羧酸减水剂。研究了单体摩尔比、引发剂用量、反应时间、反应温度、大单体分子质量对合成减水剂的水泥净浆流动度的影响,得到最佳合成工艺条件;通过红外光谱、凝胶色谱表征对减水剂进行分子结构分析;研究不同减水剂掺量对水泥净浆流动度的影响,并与常用的醚类、酯类聚羧酸盐减水剂进行性能对比。结果表明,当减水剂掺量为0.28%时,减水率为36.8%,对水泥的适应性较好。  相似文献   

14.
以甲基丙烯酸聚乙二醇单甲醚酯(MPEGMAA2000)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)和甲基丙烯酸羟乙酯(HEMA)为主要原料,H2O2-FeSO4为引发剂,合成MPEGMAA-AMPS-HEMA酯类聚羧酸系减水剂。在单因素试验的基础上,以水泥净浆流动度为响应值,用Design-Expert进行响应面优化,得到二次模型响应模型的最优点:n(MPEGMAA)∶n(AMPS)∶n(HEMA)=1.0∶1.17∶1.0、引发剂用量为0.57%、聚合时间4.9 h、聚合温度55.9℃,水泥净浆流动度预测值为290.5 mm,试验值为291 mm。FTIR分析结果表明,合成减水剂的链段中含有酯基、氨基、磺酸基、羟基、醚键等基团,符合预期目标。  相似文献   

15.
以甲氧基聚乙二醇甲基丙烯酸酯(MPEGMA)、丙烯酸(AA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)和丙烯酸甲酯(MA)为原料,在过硫酸铵(APS)引发下合成四元聚羧酸减水剂.通过单因素及正交试验结果表明,聚羧酸减水剂的最优合成条件为:反应温度85℃,反应时间8 h,APS用量为单体总质量的0.7%,n(AMPS):n(MPEGMA):n(MA):n(AA)=17:8:6:69.合成的减水剂掺量为0.6%,水灰比为0.3时,水泥净浆初始流动度达302 mm,2 h内水泥净浆流动度基本无损失.减水剂的数均分子质量以50 000~55 000较适宜.  相似文献   

16.
以(NH4)2S2O8为引发剂,通过自由基溶液共聚反应,在木质素磺酸钙表面接枝丙烯酸、马来酸酐等单体,合成了接枝改性木质素磺酸盐减水剂.以净浆流动度为考察指标,通过正交试验确定最佳工艺条件:引发剂用量为0.2%,丙烯酸用量为10%,反应时间为2 h,反应温度为80℃;对于改性前后的起泡性进行了对比,研究了改性木质素磺酸盐减水剂对水泥净浆流动度、凝结时间和减水率的影响,并进行了对比试验.结果表明:改性后的起泡性有了明显的减弱,并有效缩短了凝结时间,具有较好的减水性能,减水率达20.85%.  相似文献   

17.
酯类聚羧酸系减水剂的合成与性能研究   总被引:1,自引:0,他引:1  
采用酯化工艺合成了一种含聚醚长链的聚乙二醇单甲醚单甲基丙烯酸酯(MPEGMAA),以此大单体和丙烯酸(AA)、甲基丙烯酸(MAA)、丙基磺酸钠(SAS)、马来酸酐(MAn)等进行自由基聚合,合成了酯类聚羧酸系减水剂.并确定了合成该类减水剂的最佳配比为:n(AA):n(MAA):n(MPEG600MAA):n(MAn):n(SAS)=10.5:3.5:7.0:2.0:7.0,引发剂过硫酸铵用量为1.0%.当减水剂掺量为0.25%时,水泥净浆初始流动度为345mm,120min内水泥净浆流动度基本无损失.  相似文献   

18.
常温合成烯丙基聚氧乙烯醚型聚羧酸减水剂研究   总被引:1,自引:0,他引:1  
按照正交试验的方法,利用双氧水-连二亚硫酸钠(SD)氧化还原引发体系,以烯丙基聚氧乙烯醚(APEG)、马来酸酐(MA)、丙烯酰胺(AM)及丙烯酸(AA)为原料,进行自由基聚合,制备醚类聚羧酸系高性能减水剂.研究结果表明:最佳聚合工艺参数为:反应的最优配合比n(MA)∶n(APEG)∶n(AM)∶n(AA)=1.6∶1.5∶1.5∶4.0.其中,SD用量为单体总质量的百分比4.0%,双氧水(30%)用量为单体总质量的4.0%.使用合成的样品进行了水泥净浆、水泥砂浆和混凝土试验.该合成样品具有掺量低、减水率高、水泥适应性广、保坍性好、增强效果好等突出优点.  相似文献   

19.
蔗糖酯改性聚羧酸减水剂的合成   总被引:2,自引:1,他引:1  
以自制丙烯酸蔗糖酯(ASE)、自制丙烯酸聚乙二醇单甲醚酯(MPA)、丙烯酸(AA)、甲基丙烯磺酸钠(MAS)为原料,以过硫酸铵(APS)为引发剂,采用水溶液共聚法合成聚羧酸系减水剂。研究了反应过程中单体物质的量比、引发剂用量、蔗糖酯含量对聚羧酸系减水剂性能的影响,在n(AA)∶n(MPA)∶n(MAS)∶n(ASE)=3.5∶1.0∶1.0∶0.3,引发剂用量为2.5%,ASE含量为7.8%(质量比)时合成的改性聚羧酸减水剂性能最好,其折固掺量为0.2%,水灰比为0.29时,水泥净浆流动度达303 mm。  相似文献   

20.
以甲基烯丙基聚氧乙烯醚(TPEG)、丙烯酸(AA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)等作为合成的主要原材料,按n(AA)∶n(AMPS)∶n(AM)∶n(TPEG)=(3.5~2.0)∶0.3∶0.3∶1.0,选取酸醚比[n(AA)∶n(TPEG)]为3.5、2.75、2.0,催化剂用量为大单体质量的0.05%、0.10%、0.15%,在不同温度下合成缓释型聚羧酸系减水剂。通过测试水泥净浆经时流动度,确定不同合成温度下最佳的酸醚比和催化剂用量。并对按最佳配比合成的减水剂进行性能试验研究,结果表明,采用适当的合成工艺,常温和高温条件下合成的缓释型聚羧酸减水剂的性能基本相同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号