首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
硫酸盐环境下的水下高性能混凝土会发生性能劣化,伴随着体积膨胀效应。针对掺加了粉煤灰、矿粉的C30和C45混凝土,定量研究其受硫酸盐侵蚀后的体积膨胀效应。研究结果表明:(1)强度等级越高的混凝土,密实度越高,体积膨胀效应越弱;(2)防腐剂的掺入,具有增大试件初始体积的效应,而且掺量越大,试件的初始体积越大;(3)浅水区的硫酸盐侵入以自由扩散作用为主,深水区则增加了明显的压力渗透作用,使得同龄期的情况下,深水区的混凝土膨胀效应明显大于浅水区;(4)防腐剂的最优掺量为3%。  相似文献   

2.
为进一步促进掺氧化镁混凝土的研究与应用,研究了工程温度条件下氧化镁膨胀剂的活性和掺量对混凝土力学性能和变形性能的影响。结果表明:同等条件下,氧化镁活性越高,掺量越大,混凝土强度下降越明显;掺氧化镁膨胀剂的混凝土对养护温度的变化非常敏感,工程温度条件使混凝土强度增长迅速;氧化镁掺量越大,混凝土的膨胀值越大;氧化镁活性值越高,膨胀开始的龄期越短。  相似文献   

3.
在普通硅酸盐水泥混凝土中加入一定的粉煤灰和矿粉来改善混凝土的抗硫酸盐腐蚀性能是可行的。研究表明,掺入10%、20%和30%的粉煤灰能够满足各个强度等级混凝土的抗硫酸盐性能指标。对于S95矿粉,在高强混凝土中(C40、C45)掺量达到30%,仍然可以满足混凝土抗硫酸盐性能指标,而强度稍低的混凝土(C30、C35)中,经过150次硫酸盐侵蚀后试件强度已经低于70%,未能达到标准要求。在各个强度等级配合比中,掺粉煤灰的混凝土抗硫酸盐性能要明显优于掺矿粉,但掺料掺量增加后试件抗硫酸盐性能稍有下降。  相似文献   

4.
为了研究短切玄武岩纤维混凝土试件尺寸变化对其基本力学性能的影响,对不同纤维长度(15,25 mm)、纤维体积掺量(0.1%,0.2%)、基体混凝土强度等级(C30,C40)的330个短切玄武岩纤维混凝土(BFRC)试件分别进行了立方体抗压强度、轴心抗压强度、劈裂抗拉强度、弯曲抗拉强度试验并对试验数据处理,以尺寸效应度反映尺寸效应规律。研究结果表明:玄武岩纤维混凝土立方体抗压强度试件的尺寸换算系数受混凝土的强度等级、纤维长度、纤维体积掺量的影响较小;轴心抗压强度的尺寸效应随混凝土强度等级、纤维长度、纤维体积掺量的增大均有所提高;劈裂抗拉强度随混凝土强度等级变化,其尺寸效应不明显,但随纤维长度的减小及纤维体积掺量的增加,尺寸效应有增大趋势;混凝土强度等级和纤维长度的改变对混凝土弯曲抗拉强度的尺寸效应影响不大,但随纤维体积掺量的增加,尺寸换算系数先减小后变大。  相似文献   

5.
元强  邓德华  张文恩  刘轶翔 《混凝土》2006,(1):33-35,42
体积膨胀是水泥基材料硫酸盐侵蚀的主要劣化模式之一,一般认为体积膨胀的机理是由于外部硫酸根离子与水泥基材料内部水化铝酸钙、单硫型硫铝酸三钙、来水化的铝酸三钙和氢氧化钙等易受侵蚀化合物反应,形成膨胀性的石膏或钙矾石——侵蚀生成物所致。本文采用室温下5%硫酸钠溶液浸泡试验,研究浸泡后砂浆试件的线长度变化,探讨掺粉煤灰水泥砂浆受硫酸盐侵蚀后的体积膨胀规律;采用XRD微观分析和化学分析,揭示其侵蚀机理。试验结果表明,未掺粉煤灰的水泥砂浆在硫酸盐溶液侵蚀下,出现其线长度不断增长的现象.砂浆试件内部膨胀性产物一钙矾石和石膏形成量不断增加,且水胶比越大,其膨胀现象越严重;但掺粉煤灰的砂浆的线长度在9个月内变化很微小,粉爆欢掺量越大膨胀越小。其试件内部膨胀性产物的量很少。且渗入试件内的硫酸根离子SO4^2-的量很少是粉煤灰抑制砂浆膨胀的主要原因。  相似文献   

6.
混凝土耐久性是反应其内部材料性能和抵抗外部环境作用的一个综合性评价指标。为了研究不同水胶比及粉煤灰掺量混凝土的耐久性能,在考虑各地气候及环境的基础上,以3种水胶比及粉煤灰掺量的混凝土作为研究对象,在室内设计了模拟现场侵蚀环境的3种耐久性试验,结果表明:不同环境下混凝土侵蚀机理不同,自然浸泡环境下以化学腐蚀为主,冻融循环作用下混凝土试件则主要受到物理破坏,硫酸盐溶液中进行干湿循环时试件同时受到复杂的物理化学反应。三类试件中以水胶比是0.30,粉煤灰掺量为15%的试件在各类环境下的耐久性最好。混凝土在硫酸盐溶液中会生成膨胀产物钙矾石,对试件产生较大的膨胀压力。  相似文献   

7.
《混凝土》2015,(11)
混凝土损伤是造成混凝土耐久性不足的一个重要因素。试验研究了C50、C60混凝土在硫酸盐、氯盐和荷载复合作用下损伤规律。研究表明:硫酸盐会对混凝土造成损伤,表现为混凝土动弹性模量呈现先增大后减小趋势。硫酸盐浓度越高,混凝土损伤速率越大;氯盐会阻碍硫酸盐的损伤作用,氯盐浓度越高,阻碍作用越明显;荷载作用延缓了受压区混凝土损伤,但作用不明显;荷载作用促进了受拉区混凝土的损伤,荷载越大促进作用越明显。  相似文献   

8.
混凝土结构在硫酸盐侵蚀环境中服役日趋常见,但就硫酸盐侵蚀环境下混凝土防腐技术的研究尚不系统。研究了掺矿物掺合料、液体防腐剂、粉体防腐剂对硫酸盐作用下混凝土轴心抗压强度、抗压耐蚀系数及质量损失的影响,分析了几种防腐技术的作用效果及机理。结果表明,硫酸盐侵蚀环境下,粉体防腐剂、液体防腐剂、矿物掺合料对混凝土抗压强度、抗压耐蚀系数、质量损失率均有所影响;与矿物掺合料相比,防腐剂(特别是粉体防腐剂)的掺加减少了Ca(OH)2、Aft等膨胀型水化产物的生成,显著提升了混凝土抗硫酸盐侵蚀性能。  相似文献   

9.
高温后掺防腐剂C35高性能混凝土剩余抗压强度试验研究   总被引:2,自引:0,他引:2  
对高温后C35、C40、C50高性能混凝土与掺防腐剂C35高性能混凝土的剩余抗压强度进行了对比试验,描述了高温过程试验现象,分析了掺防腐剂C35高性能混凝土爆裂原因,探索添加防腐剂对高温后高性能混凝土剩余抗压强度的影响;通过回归分析建立了C35、C40、C50高性能混凝土与掺防腐剂C35高性能混凝土抗压强度与温度之间的二元线性回归公式。研究表明:掺加防腐剂C35高性能混凝土试件在400℃时就发生爆裂,而未掺加防腐剂C35高性能混凝土试件在试验过程中没发生爆裂现象,表明虽然掺加防腐剂有利于增强高性能混凝土抗压强度,但是不利于高性能混凝土抗爆。  相似文献   

10.
通过30根玄武岩纤维(BFRP)管膨胀混凝土短柱轴压试验,研究了BFRP布层数、膨胀剂掺量对BFRP管膨胀混凝土短柱轴压力学性能的影响。结果表明:试件脆性破坏特征明显;掺入适量膨胀剂可提高BFRP管混凝土短柱轴压极限承载能力,试件轴压极限承载能力提高幅度随膨胀剂掺量增加呈先提高后降低趋势;对于本试验C40,C50两个系列试件其最大轴压极限承载力对应膨胀剂掺量分别为10%和15%;膨胀剂掺量相同时,随BFRP布层数增加,试件轴压极限承载力有明显提高趋势;试件轴向、环向应力-应变曲线均表现为双折线形。  相似文献   

11.
在钢管核心混凝土中掺加适量膨胀剂,可补偿混凝土的收缩,改善钢管混凝土结构或构件的力学性能。配制不同膨胀剂掺量微膨胀轻骨料混凝土,分别制作了棱柱体试件和钢管混凝土试件,测试其在自由膨胀及限制膨胀两种条件下的变形性能。试验结果表明:在自由膨胀状态下,膨胀剂掺量越大,各阶段混凝土收缩的趋势越缓慢;在钢管限制膨胀状态下,各组试件的应变-时间曲线发展趋势大致相同,钢管外壁的环向应变均先增大后减小,直至最后趋于稳定,膨胀剂掺量越大,养护前期管壁的最大拉应变越小。膨胀剂掺量为12%时可较好地实现钢管混凝土的补偿收缩。  相似文献   

12.
对不同钢纤维体积掺量的掺入引气剂的活性粉末混凝土(简称RPC)试件及未掺引气剂的RPC试件进行了高温后力学性能测试和质量测量,考察了RPC在掺入引气剂或未掺引气剂时,受火温度对不同钢纤维体积掺量的RPC试件的抗压强度、抗折强度、折压比及质量损失的影响。试验结果表明,未掺引气剂的RPC在超过200℃时爆裂,且在200℃之前强度变化趋势与掺引气剂RPC的强度变化趋势一致。随着试件所受高温温度的升高,试件强度整体呈现阶梯下降趋势;400℃以前,钢纤维体积掺量对RPC强度影响甚微,400℃以后,钢纤维体积掺量越高,残余强度百分比越大。不同钢纤维体积掺量RPC试件的质量损失率趋势一致,纤维掺量对RPC质量损失率影响不大。  相似文献   

13.
《混凝土》2016,(1)
以钢纤维体积掺量为主要考察参数,对圆钢管钢纤维再生混凝土短柱进行了轴心受压试验。观察了其受力全过程和破坏形态,得到了荷载-位移曲线和荷载-应变曲线,并研究了钢纤维体积掺量对其受力性能的影响。结果表明:圆钢管钢纤维再生混凝土短柱的轴压破坏形态呈斜剪压破坏,钢纤维的掺量对其破坏形态几乎没有影响;钢纤维的掺入对试件承载力的增强作用并不明显,当钢纤维体积掺量不超过1.5%时,试件承载力较未掺加钢纤维构件有小幅提高,但当体积掺量超过2%后,因钢纤维易结团、混凝土和易性变差,试件承载力反而出现降低,且钢纤维体积掺量越大,降幅也越大;掺入钢纤维后,试件延性显著改善,位移延性系数随钢纤维体积掺量的提高而增大;为使试件同时获得较高的承载力和延性,建议钢纤维的体积掺量取为1.0%~1.5%;CECS 28:2012推荐计算式能很好地评定圆钢管钢纤维再生混凝土短柱的承载力,建议设计时采用。研究结果可为工程应用提供参考。  相似文献   

14.
网状聚丙烯纤维和PVA纤维对高性能混凝土高温性能的影响   总被引:1,自引:0,他引:1  
本文研究了含湿量和纤维对高性能混凝土高温爆裂和高温后残余力学性能的影响。研究结果表明,含湿量是影响高性能混凝土高温爆裂的主要因素。高性能混凝土发生爆裂的温度范围是350~450℃,爆裂的临界含湿量为63%~75%。试件含湿量越高,试件爆裂的频率和损伤程度越大。单掺体积分数为0.05%的网状聚丙烯纤维或PVA纤维即可防止高性能混凝土发生高温爆裂,纤维掺量越高,高性能混凝土高温损伤程度越小。单掺网状聚丙烯纤维和PVA纤维改善了高性能混凝土高温后残余抗压强度、残余劈拉强度和残余断裂能。  相似文献   

15.
魏学海 《石材》2023,(7):126-128
本文研究了混凝土双膨胀源膨胀剂对大掺量矿物掺合料混凝土强度、膨胀性能及抗裂性能的影响。试验结果表明:(1)双膨胀源膨胀剂的掺入会使大掺量矿物掺合料混凝土的强度先升高后降低,在矿物掺合料为50%的胶砂、C30混凝土及C50混凝土中添加胶凝材料总量6%的双膨胀源膨胀剂,抗压强度和抗折强度表现较好。(2)随着双膨胀源膨胀剂添加量的增加,胶砂试件及C30、C50混凝土试件的限制膨胀率均出现上升趋势,且C30混凝土的膨胀比C50混凝土明显。(3)双膨胀源膨胀剂适量添加且做好前期养护可以有效改善混凝土的早期开裂,带模养护7d可以延缓混凝土的开裂,结合双膨胀源膨胀剂对强度的影响,添加量为6%时可以有效提高混凝土的抗裂性能。  相似文献   

16.
薛刚  董亚杰  衣笑  高鹏 《建筑结构》2022,(3):115-119,126
为研究橡胶混凝土断裂韧度,以C30混凝土为基准混凝土,将橡胶颗粒的粒径、掺量以及试件的缝高比作为变量,制备混凝土试件进行楔入劈拉试验研究.计算得到橡胶混凝土试件起裂韧度及失稳断裂韧度的变化规律.结果 表明:掺人橡胶后,混凝土的起裂韧度有明显降低,橡胶掺量越高降幅越明显,橡胶掺量为5%~15%的混凝土失稳断裂韧度大于基准...  相似文献   

17.
《混凝土》2014,(8)
提出了钢管混凝土桁架梁式结构核心混凝土理想结构模型与自密实补偿收缩钢纤维钢管混凝土设计方法。通过确定复掺减缩型高效减水剂与高能膨胀剂合理掺量,有效补偿混凝土的收缩。钢纤维掺量不超过60kg/m3(体积掺量0.75%)时能满足自密实混凝土技术要求。研究了钢纤维对微膨胀钢管混凝土力学性能与体积变形性能的影响规律;并根据钢管混凝土低温施工要求,研究了自密实补偿收缩钢纤维钢管混凝土的抗冻性设计方法,对其抗冻性进行了验证。试验结果表明,亚硝酸钠掺量0.4%时,现场养护核心混凝土试件与钢管混凝土短柱轴压与相应标准养护试件的轴压基本没有差异,混凝土抗冻效果良好,满足低温施工质量要求。  相似文献   

18.
为研究EPS颗粒体积掺量对混凝土单轴动态抗压强度和破坏形态的影响,采用直径74 mm的分离式霍普金森压杆装置,对4种EPS颗粒体积掺量的EPS混凝土进行单轴冲击压缩试验,分析了应变率和EPS颗粒体积掺量对EPS混凝土单轴动态抗压强度和破坏形态的影响。试验结果表明,EPS混凝土单轴动态抗压强度随应变率的增加而增大,随EPS颗粒体积掺量的增加而降低,当EPS颗粒体积掺量在20%~30%之间,EPS混凝土单轴动态抗压强度降低幅度较小;EPS混凝土试件破坏形态具有明显的高掺量低应变率效应;当EPS颗粒体积掺量达到30%之后,EPS混凝土试件裂而不碎。  相似文献   

19.
《混凝土》2017,(1)
为研究刚性聚丙烯纤维的掺入对透水混凝土材料耐久性能的影响,试验室中对4种掺量的钢纤维改性透水混凝土分别进行了冻融循环试验和硫酸盐干湿循环试验。研究表明随着纤维掺量的增加,透水混凝土的抗冻融性能和抗硫酸盐干湿循环性能均有提升,1%体积掺量的刚性聚丙烯纤维改性透水混凝土具备较好的耐久性能。对透水混凝土的冻融指标评定应以质量损失率为主,纤维一定程度上承担了基体冻融过程中的体积膨胀应力和硫酸盐循环中的结晶压力,对透水混凝土有效的发挥了阻裂和增强作用。  相似文献   

20.
《工业建筑》2021,51(8):199-205,178
为探讨冻融循环下的玄武岩纤维增强混凝土(BFRC)断裂损伤和本构软化特性,以5种不同的玄武岩纤维体积百分比掺量(0%,0.1%、0.2%、0.3%和0.4%)设计5组试件,对BFRC试件进行不同次数(0,25,50,75,100,125次)的冻融循环试验,再对混凝土试件进行三点弯曲加载试验。试验结果表明:在0.3%体积掺量以内,玄武岩纤维掺量越高,BFRC的起裂韧度、失稳韧度和断裂能越高;纤维掺量超过0.3%后,BFRC起裂韧度增加不明显而失稳韧度和断裂能略有下降;混凝土冻融损伤降低了混凝土的断裂韧度和断裂能,但玄武岩纤维对混凝土的冻融损伤具有一定的抑制作用,纤维掺量越高,BFRC断裂韧度和断裂能的冻融损失越小。拟合试验数据得到了BFRC的冻融损伤计算模型,在Petersson混凝土双线性软化本构关系的基础上,进一步推导获得冻融循环下的BFRC双线性软化本构关系曲线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号