首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在多标记学习中,发现与利用各标记之间的依赖关系能提高学习算法的性能。文中基于分类器链模型提出一种针对性的多标记分类算法。该算法首先量化标记间的依赖程度,并构建标记之间明确的树型依赖结构,从而可减弱分类器链算法中依赖关系的随机性,并将线性依赖关系泛化成树型依赖关系。为充分利用标记间的相互依赖关系,文中采用集成学习技术进一步学习并集成多个不同的标记树型依赖结构。实验结果表明,同分类器链等算法相比,该算法经过集成学习后有更好的分类性能,其能更有效地学习标记间的依赖关系。  相似文献   

2.
3.
基于贝叶斯信念网络的数据分类挖掘算法   总被引:1,自引:0,他引:1  
李芸 《计算机科学》2006,33(9):157-158
贝叶斯方法是概率统计学中一种很重要的方法。分类知识发现是数据挖掘的一项重要内容,研究各种高性能、高速度的分类算法是数据挖掘面临的主要问题之一。本文介绍了贝叶斯信念网络,并针对传统算法在对海量数据进行分类时速度较慢的缺点.提出了压缩候选的贝叶斯信念网络构造算法。它在不影响原有算法的可靠性的前提下,大大提高了学习速度。并通过在实际工作的执行情况来证明该算法的有效性。  相似文献   

4.
一种基于向量夹角的k近邻多标记文本分类算法   总被引:1,自引:1,他引:1  
广凯  潘金贵 《计算机科学》2008,35(4):205-206
在多标记学习中,一个示例可以有多个概念标记.学习系统的目标是通过对由多标记样本组成的训练集进行学习,以尽可能正确地预测未知样本所对应的概念标记集.k近邻算法已被应用到多标记学习中,该算法将测试示例转化为多维向量,根据其k个近邻样本的标记向量来确定该测试示例的标记向量.传统的k近邻算法是基于向量的空间距离来选取近邻,而在自然语言处理中,文本间的相似度常用文本向量的夹角来表示,所以本文将文本向量间的夹角关系作为选取k近邻的标准并结合k近邻算法提出了一种多标记文本学习算法.实验表明,该算法在文档分类的准确率上体现出较好的性能.  相似文献   

5.
何志芬  杨明  刘会东 《软件学报》2014,25(9):1967-1981
提出了多标记分类和标记相关性的联合学习(JMLLC),在JMLLC中,构建了基于类别标记变量的有向条件依赖网络,这样不仅使得标记分类器之间可以联合学习,从而增强各个标记分类器的学习效果,而且标记分类器和标记相关性可以联合学习,从而使得学习得到的标记相关性更为准确.通过采用两种不同的损失函数:logistic回归和最小二乘,分别提出了JMLLC-LR(JMLLC with logistic regression)和JMLLC-LS(JMLLC with least squares),并都拓展到再生核希尔伯特空间中.最后采用交替求解的方法求解JMLLC-LR和JMLLC-LS.在20个基准数据集上基于5种不同的评价准则的实验结果表明,JMLLC优于已提出的多标记学习算法.  相似文献   

6.
多标记学习主要用于解决因单个样本对应多个概念标记而带来的歧义性问题,而半监督多标记学习是近年来多标记学习任务中的一个新的研究方向,它试图综合利用少量的已标记样本和大量的未标记样本来提高学习性能。为了进一步挖掘未标记样本的信息和价值并将其应用于文档多标记分类问题,该文提出了一种基于Tri-training的半监督多标记学习算法(MKSMLT),该算法首先利用k近邻算法扩充已标记样本集,结合Tri-training算法训练分类器,将多标记学习问题转化为标记排序问题。实验表明,该算法能够有效提高文档分类性能。  相似文献   

7.
多示例多标记学习(Multi-Instance Multi-Label,MIML)是一种新的机器学习框架,基于该框架上的样本由多个示例组成并且与多个类别相关联,该框架因其对多义性对象具有出色的表达能力,已成为机器学习界研究的热点.解决MIML分类问题的最直接的思路是采用退化策略,通过向多示例学习或多标记学习的退化,将MIML框架下的分类问题简化为一系列的二类分类问题进行求解.但是在退化过程中会丢失标记之间的关联信息,降低分类的准确率.针对此问题,本文提出了MIMLSVM-LOC算法,该算法将改进的MIMLSVM算法与一种局部标记相关性的方法ML-LOC相结合,在训练过程中结合标记之间的关联信息进行分类.算法首先对MIMLSVM算法中的K-medoids聚类算法进行改进,采用的混合Hausdorff距离,将每一个示例包转化为一个示例,将MIML问题进行了退化.然后采用单示例多标记的算法ML-LOC算法继续以后的分类工作.在实验中,通过与其他多示例多标记算法对比,得出本文提出的算法取得了比其他分类算法更优的分类效果.  相似文献   

8.
NB方法条件独立性假设和BAN方法小训练集难以建模。为此,提出一种基于贝叶斯学习的集成流量分类方法。构造单独的NB和BAN分类器,在此基础上利用验证集得到各分类器的权重,通过加权平均组合各分类器的输出,实现网络流量分类。以Moore数据集为实验数据,并与NB方法和BAN方法相比较,结果表明,该方法具有更高的分类准确率和稳定性。  相似文献   

9.
针对最优贝叶斯网络分解是一个NP-完全问题,提出了一种基于混合遗传贝叶斯网络分解算法PHGA.PHGA算法将进化过程划分为三个不同的阶段,在前期和中期阶段采用较大的种群规模和交叉率,以及较小的群体选择压力,来增强PHGA算法的全局探索能力,避免早熟现象;在后期采用较小的种群规模和交叉率,以及较大的群体选择压力,并引入爬山局部优化算子,以增强群体在进化后期中的局部寻优能力,提高算法的收敛速度.三个标准的贝叶斯网络上的实验表明该算法在最优解方面要优于遗传算法和模拟退火算法.  相似文献   

10.
基于动态贝叶斯网络的多人跟踪算法   总被引:2,自引:0,他引:2       下载免费PDF全文
胡静  刘志镜 《计算机工程》2008,34(16):247-248
在单目视频多视角下的多人跟踪中,单一特征选取会造成识别困难。该文提出一种基于动态贝叶斯网络的分类特征联合建模的跟踪方法,将视频中基于时空的运动特征和轮廓特征相复合,采用先粗后精的方法解决由于视觉角度不同而造成的跟踪困难,实现同一场景中多视角下的多人跟踪。实验证明该方法有效且具有较好的鲁棒性。  相似文献   

11.
多标签代价敏感分类集成学习算法   总被引:10,自引:2,他引:10  
付忠良 《自动化学报》2014,40(6):1075-1085
尽管多标签分类问题可以转换成一般多分类问题解决,但多标签代价敏感分类问题却很难转换成多类代价敏感分类问题.通过对多分类代价敏感学习算法扩展为多标签代价敏感学习算法时遇到的一些问题进行分析,提出了一种多标签代价敏感分类集成学习算法.算法的平均错分代价为误检标签代价和漏检标签代价之和,算法的流程类似于自适应提升(Adaptive boosting,AdaBoost)算法,其可以自动学习多个弱分类器来组合成强分类器,强分类器的平均错分代价将随着弱分类器增加而逐渐降低.详细分析了多标签代价敏感分类集成学习算法和多类代价敏感AdaBoost算法的区别,包括输出标签的依据和错分代价的含义.不同于通常的多类代价敏感分类问题,多标签代价敏感分类问题的错分代价要受到一定的限制,详细分析并给出了具体的限制条件.简化该算法得到了一种多标签AdaBoost算法和一种多类代价敏感AdaBoost算法.理论分析和实验结果均表明提出的多标签代价敏感分类集成学习算法是有效的,该算法能实现平均错分代价的最小化.特别地,对于不同类错分代价相差较大的多分类问题,该算法的效果明显好于已有的多类代价敏感AdaBoost算法.  相似文献   

12.
林梦雷  刘景华  王晨曦  林耀进 《计算机科学》2017,44(10):289-295, 317
在多标记学习中,特征选择是解决多标记数据高维性的有效手段。每个标记对样本的可分性程度不同,这可能会为多标记学习提供一定的信息。基于这一假设,提出了一种基于标记权重的多标记特征选择算法。该算法首先利用样本在整个特征空间的分类间隔对标记进行加权,然后将特征在整个标记集合下对样本的可区分性作为特征权重,以此衡量特征对标记集合的重要性。最后,根据特征权重对特征进行降序排列,从而得到一组新的特征排序。在6个多标记数据集和4个评价指标上的实验结果表明,所提算法优于一些当前流行的多标记特征选择算法。  相似文献   

13.
为了提高预测的准确性,文中结合机器学习中堆积(Stacking)集成框架,组合多个分类器对标记分布进行学习,提出基于标记分布学习的异态集成学习算法(HELA-LDL).算法构造两层模型框架,通过第一层结构将样本数据采用组合方式进行异态集成学习,融合各分类器的学习结果,将融合结果输入到第二层分类器,预测结果是带有置信度的标记分布.在专用数据集上的对比实验表明,HELA-LDL可以发挥各种算法在不同场景下的性能较优,稳定性分析进一步说明算法的有效性.  相似文献   

14.
金融文本多标签分类算法可以根据用户需求在海量金融资讯中实现信息检索。为进一步提升金融文本标签识别能力,建模金融文本多标签分类中标签之间的相关性,提出基于图深度学习的金融文本多标签分类算法。图深度学习通过深度网络学习局部和全局的图结构特征,可以刻画节点之间的复杂关系。通过建模标签关联实现标签之间的知识迁移,是构造具有强泛化能力算法的关键。所提算法结合标签之间的关联信息,采用基于双向门控循环网络和标签注意力机制得到的新闻文本对应不同标签的特征表示,通过图神经网络学习标签之间的复杂依赖关系。在真实数据集上的实验结果表明,显式建模标签之间的相关性能够极大地增强模型的泛化能力,在尾部标签上的性能提升尤其显著,相比CAML、BIGRU-LWAN和ZACNN算法,该算法在所有标签和尾部标签的宏观F1值上最高提升3.1%和6.9%。  相似文献   

15.
刘云  肖添  肖雪 《计算机与数字工程》2022,50(2):243-246,260
多标签学习是分类任务中一个重要研究方向,如何保证高分类精度是关键要素.论文提出基于相似度的多标签分类算法SMLC.该算法首先构建实例相似度函数,再采用并行计算方式算出相似值,最后通过加权计算类标签集合权重或者学习阈值方法预测类标签集合.仿真结果表明,与RankSVM、ML-KNN算法对比,SMLC在多标签分类任务的多个...  相似文献   

16.
提出一种基于超椭球支持向量机的多类文本分类算法。对每一类样本,利用超椭球支持向量机方法在特征空间求得一个超椭球,使其包含该类尽可能多的样本,同时将噪音点排除在外。分类时,利用待分类样本映射到每个超椭球球心的马氏距离确定其类别。在标准数据集Reuters 21578上的实验结果表明,该算法有效地提高了分类精度。  相似文献   

17.
多标签图像分类是多标签数据分类问题中的研究热点.针对目前多标签图像分类方法只学习图像的视觉表示特征,忽略了图像标签之间的相关信息以及标签语义与图像特征的对应关系等问题,提出了一种基于多头图注意力网络与图模型的多标签图像分类模型(ML-M-GAT).该模型利用标签共现关系与标签属性信息构建图模型,使用多头注意力机制学习标签的注意力权重,并利用标签权重将标签语义特征与图像特征进行融合,从而将标签相关性与标签语义信息融入到多标签图像分类模型中.为验证本文所提模型的有效性,在公开数据集VOC-2007和COCO-2014上进行实验,实验结果表明, ML-M-GAT模型在两个数据集上的平均均值精度(mAP)分别为94%和82.2%,均优于CNN-RNN、ResNet101、MLIR、MIC-FLC模型,比ResNet101模型分别提高了4.2%和3.9%.因此,本文所提的ML-M-GAT模型能够利用图像标签信息提高多标签图像分类性能.  相似文献   

18.
针对现有多标签分类算法忽略了标签之间的内生关系,将多标签分类问题转化为序列生成问题,充分考虑标签之间的共生关系,以Seq2Seq模型为基础,从词语级别和语义级别两个维度提取文本特征,通过对特征提取模块、编码器结构、混合注意力机制、解码器预测部分的改进,提出了基于多级特征和混合注意力机制的多标签分类算法.在Zhihu、R...  相似文献   

19.
极限学习机因具有高效处理、性能优越以及更少人工参数设定等优点,已成功应用于批处理多标签分类问题.然而,实际应用领域涌现的数据流呈现海量快速、多标签和概念漂移等特点,使得这些传统的多标签分类算法面临精度与时空的挑战.本文提出一种基于核极限学习机的多标签数据流集成分类方法.首先,为适应数据流环境,利用滑动窗口机制将数据流划...  相似文献   

20.
传统的多标签学习算法一般没有考虑标签的不均衡性,从而忽略了标签不平衡给分类带来的影响。但统计发现,目前常用的多标签数据集均存在标签不均衡问题,且少数类标签往往更加重要。基于此,本文提出了一种基于分类间隔增强的不平衡多标签学习算法(Imbalanced multi-label learning algorithm based on classification interval enhanced, MLCIE),旨在利用各标签分类间隔的重构来增强分类器对少数类标签样本的学习效率,提升样本标签质量,从而减少多标签不平衡对分类器学习精度的影响。首先利用各标签密度与条件熵计算各标签的不确定性系数;然后构建分类间隔增强矩阵,将各标签独有的密度信息融入到原始标签矩阵中,获取平衡的标签空间;最后使用极限学习机作为线性分类器进行分类。本文在11个多标签标准数据集上与其他7种多标签学习算法进行对比实验,结果表明本文算法在解决标签不平衡问题上有一定效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号