首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为解决柔性直流电网的故障问题,采用混合型模块化多电平换流器搭建双极四端直流电网。设计了单极换流器故障及直流线路故障无闭锁运行策略。系统无闭锁运行期间并网点交流电压稳定,风机可维持正常运行。考虑到故障期间风机持续并网输出功率,根据风电场出力设计了耗散电阻自适应分级投入策略,通过与风机内部的斩波电阻的配合,耗散掉多余的能量。最后,通过PSCAD/EMTDC的多组仿真,验证了混合型柔性直流电网的故障无闭锁运行及能量耗散的有效性。  相似文献   

2.
针对永磁同步风电机组远距离大规模并网的问题,研究了采用半桥型模块化多电平换流器(MMC)和直流断路器(DCCB)进行架空直流输电的并网方案。但架空线路故障率高,在发生直流侧故障、网侧交流故障时,基于MMC的高压直流(MMC-HVDC)系统保护装置会动作,导致MMC闭锁,不能不间断运行。为解决MMC-HVDC穿越交、直流故障的问题,基于DCCB和耗散电阻,提出了一种MMC-HVDC系统的交、直流故障穿越方案。在故障发生后,通过设计DCCB风电场侧MMC降压协调控制策略,以及高压直流侧耗散电阻和风电场侧制动电阻间的控制策略和配合方案,实现了MMC-HVDC系统的交、直流故障穿越。最后,通过PSCAD/EMTDC下的多组仿真,验证了上述交直流故障穿越方案的有效性和正确性。仿真结果表明,所设计的穿越方案能够使MMC-HVDC系统在不闭锁MMC的前提下,安全穿越故障期;在故障清除后,系统快速恢复到正常运行状态。  相似文献   

3.
风电经混合型MMC外送的暂态能量转移机理与限流耗散策略   总被引:1,自引:0,他引:1  
混合型模块化多电平换流器(MMC)具有交直流解耦控制、抑制故障电流、维持并网电压等独特优势,在基于模块化多电平换流器的风电并网系统中具有广阔的应用前景。已有基于混合型MMC的交直流故障穿越策略大多仅考虑直流电网本体,并未结合风电并网考虑暂态能量转移与耗散的问题。首先,研究了基于混合型MMC的风电并网系统在交直流故障期间的暂态发展过程,归纳出能量转移机理,分析了不同故障阶段的关键因素。然后,提出了一种具备故障识别能力的自动限流耗散方法,研究了加入限流耗散措施后的暂态能量转移变化。最后,在四端风电直流电网下验证了自动限流控制及耗散方法的有效性。  相似文献   

4.
随着海上风电的发展和区域风电装机容量的增大,规模化新能源电源通过多端柔性直流(MMC-MTDC)并网成为风电并网的一种趋势.然而,考虑MMC-MTDC和永磁风机构成的多换流器系统协调故障穿越及其故障特征解析尚未得到有效解决,亟待针对性研究.文中首先对传统风电MMC-MTDC并网系统故障穿越策略进行优化,给出了可行的穿越...  相似文献   

5.
高压柔性直流输电技术可实现有功功率的双向控制,且无换相失败问题,是实现风电并网外送的重要手段之一。风电经柔性直流并网系统易发生交直流故障,故障期间风电系统持续输出功率,过剩的暂态能量危害系统的安全运行。针对风电经柔性直流并网系统的暂态能量耗散问题,提出了一种基于全桥子模块的柔性耗能装置(flexible energy dissipation device, FEDD)。为解决子模块充放电无法准确控制的难题,提出了柔性耗能装置的动态电压控制策略和暂态能量耗散策略,并兼顾了子模块电容能量平衡。根据FEDD的工作原理和控制策略,提出了设备主要参数设计方法。最后通过RTDS实验结果验证了柔性耗能装置能够准确吸收暂态能量,保证换流站平稳穿越交直流故障。  相似文献   

6.
采用双极架空线柔性直流输电技术进行大规模风电远距离外送是其友好型并网的有效手段.针对风电直流联网系统直流故障阻断和功率盈余问题,提出了一种改进电流转移型模块化多电平换流器(M-CT-MMC),使其同时具备直流故障阻断和能量耗散的功能,从而在充分发挥耗散电阻作用的同时实现直流故障穿越.在直流故障阻断方面,通过将M-CT-MMC桥臂吸收支路的引出线互联构造三相中性点,避免了桥臂开关额外承受直流电压偏置导致的成本增加问题,并利用辅助支路间的协调配合,有效阻断了直流故障电流.在盈余功率耗散方面,针对自消纳和非自消纳工况设计了双极M-CT-MMC控制模式切换策略,在提高非故障极功率转带能力的同时自主吸收盈余功率,并基于功率耗散需求设计了耗散电阻分组投切控制策略,避免非故障极M-CT-MMC过载,从而实现不同运行工况下风电直流联网系统的直流故障穿越.最后,基于MATLAB/Simulink仿真平台验证了所提直流故障阻断及盈余功率耗散协调控制策略的有效性和可行性.  相似文献   

7.
随着风电大容量远距离输送需求的增长,柔性直流输电技术的快速发展,基于模块化多电平换流器(module multilevel converter,MMC)的多端柔性直流系统在大规模风电场并网应用中优势凸显,前景广阔。为此,首先考虑2种直流线路保护方案,从经济性和技术性2方面阐述了3类多端柔性直流风电并网系统的拓扑结构以及优缺点;接着,分析了3种系统级协调控制策略在风电并网多端系统中的应用与改进,包括主从控制、直流电压裕度控制和直流电压下垂控制;然后,针对风电并网运行中较为突出的故障穿越问题,从交流故障和直流故障2方面,讨论了提高含风电并网多端柔性直流系统故障穿越能力的方法;最后,对未来大规模风电并网其他关键技术问题进行了展望。  相似文献   

8.
离岸较远的海上风电场经模块化多电平换流器型高压直流(modular multilevel converter high voltage direct current,MMC-HVDC)联网较交流联网有技术优势,但直流系统会因电网扰动而闭锁,影响风电功率外送。为提高直流系统抗扰动能力,构建了一种提高风电场经直流联网系统低电压故障穿越能力的柔性泄能电阻方案,具有对风电运行工况和故障强度的广泛适应性。研究了风电运行工况及故障强度对直流系统闭锁的影响,提出了系统的故障穿越安全域。分析了泄能电阻阻值设计原则,给出了柔性泄能电阻阻值的边界。设计了适用于不同风电运行工况的柔性泄能电阻投切控制策略。仿真结果表明:柔性泄能电阻控制策略可以在不同风电运行工况和故障强度条件下有效防范直流系统的闭锁,改善海上风电场经MMC-HVDC联网系统运行的安全性。  相似文献   

9.
传统半桥子模块无法阻断直流短路电流,基于新型子模块的闭锁式故障穿越策略则存在换流器不可控、系统重启过程复杂等缺点,降低了模块化多电平换流器的可靠性。为此提出了一种基于负直流电压控制的无闭锁故障穿越策略,在直流侧短路后通过调制波下移将直流电压控制为负值,从而实现直流故障电流的快速清除。此外,针对无闭锁故障穿越过程中输出正负电平子模块之间电容电压不均衡的问题,提出了双排序控制算法以实现电容电压的快速均衡,同时设计了从故障发生至换流器重启整个过程中系统的无闭锁故障穿越流程。基于Matlab/Simulink的仿真结果表明,基于负直流电压控制的无闭锁穿越策略可快速阻断直流故障电流,在此过程中子模块电容电压保持均衡,可实现换流器的快速重启。  相似文献   

10.
近年来基于电压源换流器的高压直流(VSC-HVDC)输电技术发展迅速,为保证电网安全运行,经VSCHVDC并网的风电场必须具备故障穿越能力。文中研究风电场经VSC-HVDC并网时的故障穿越能力,针对并网点故障换流站传输有功降低使得交流系统和直流系统功率不平衡,造成直流电压迅速升高影响系统运行的问题,设计了一种基于传统耗能电阻电路而改进的耗能电阻拓扑结构。当电网侧发生故障时,通过投入耗能电阻吸收功率差额并且结合风电机组进行协调控制,使得VSC-HVDC风电并网系统能够顺利平稳地穿越故障。最后,在PSCAD/EMTDC搭建基于VSC-HVDC的风电场并网模型,验证了所提方法的有效性。  相似文献   

11.
海上风电柔直送出系统在交流电网发生故障时应该具备故障穿越能力.然而,风电场和柔直系统中的多类型换流设备在没有高速通信的情况下,很难协同控制实现系统低电压穿越过程中的直流电压稳定.因此,提出基于谐波注入信息传递的海上风电柔直送出系统故障穿越协调控制方法.在故障期间,风电场侧换流器检测到直流电压超过阈值后降低风电场交流电压幅值,并向系统注入谐波,使得风电机组换流器根据不同谐波阈值协同限制注入电网的功率,实现无通信条件下系统多换流设备协同的故障穿越.通过与常规的只由风电场侧换流器单独降功率的方法进行比较,在电网的各种故障类型下,所提方法可以更快速地将柔直直流电压限定在允许范围之内,系统可实现安全、可靠的故障穿越.  相似文献   

12.
架空线MMC-HVDC是大规模风电友好型并网和可靠送出的有效手段.针对架空线故障率高的问题,采用对称双极接线方式和具备故障阻断能力的混合型MMC是其主要解决方案之一.基于此方案提出了风电经双极混合型MMC-HVDC并网的直流故障穿越协调控制策略.通过混合型MMC零直流电压控制实现了故障电流的有效阻断,并维持了故障极MM...  相似文献   

13.
为降低风电场-柔性直流并网系统在交流主网发生低电压故障时的穿越成本,提出一种直流耗能装置与风电机组卸荷电路协同作用的电网故障穿越策略,在电网故障时送端换流器配合风电场快速降低直流功率输出.由于直流耗能装置仅在故障发生的前期、风电场输出功率下降前起到限制直流电压升高的作用,该策略能够显著降低直流耗能装置的体积.在此基础上,该策略将直流耗能装置中的耗能电阻分散置入到受端模块化多电平换流器中,进一步降低了卸荷成本.最后,在PSCAD/EMTDC仿真软件中,构建了风电场-柔性直流并网系统的仿真算例,对所提出的故障穿越方法的正确性和有效性进行了验证.  相似文献   

14.
研究了用于风电场并网的柔性多端直流输电系统(VSC-MTDC)交流故障穿越协调控制策略。考虑到实际风电机组的故障保护阈值,提出将升频法/降压法和直流卸荷电路相结合的故障穿越协调控制策略,同时故障期间受端站控制方式由有功电流控制优先切换到无功电流控制优先,根据电网电压跌落深度,按一定比例向电网提供无功功率,以帮助电网电压故障后迅速恢复。基于MATLAB/Simulink搭建了风电场经三端柔性直流输电并网系统模型,验证了所提控制策略的有效性。  相似文献   

15.
电网故障下交流励磁双馈风力发电机变流器建模与控制   总被引:1,自引:0,他引:1  
双脉宽调制(PWM)电压型变换器作为交流励磁双馈风力发电机的励磁电源,在风力发电系统得到广泛应用.电网故障时,要求网侧变换器直流链电压波动较小和转子侧变换器能有效控制转子电流,来实现发电机的不间断运行.以双PWM变换器的数学模型为依据,在电网故障时,将网侧变换器以转子侧变换器瞬时输入电流波动为附加前馈量的双环电压控制策略,转子侧变换器考虑定子磁链暂态的定子磁链定向控制策略.仿真结果表明了所提出的联合控制方案在电网故障发生和切除时能稳定控制直流链电压和转子电流,提高了DFIG风力发电系统电网故障下的不间断运行能力.  相似文献   

16.
针对海上风电经柔性直流联网系统受端交流故障导致的直流过电压问题,提出了直流过电压协调抑制策略。针对单极直流过电压,通过合理切换双极MMC控制模式,可使故障极MMC主动维持直流电压稳定。并设计了风电场精确减载控制策略,以保证非故障极MMC满载运行,从而降低单极MMC退出对受端交流电网的影响。针对双极直流过电压,设计了一种基于本地直流电压测量信息的风电场减载控制策略,即根据直流电压变化率及偏差量主动降低风电场有功出力,以抑制直流电压上升率及幅值。并提出了附加桨距角控制及其参数选取原则,使风电场与各换流站内电容共同维持直流电压稳定,提高系统故障穿越能力。最后,基于RTLAB OP5600实时数字仿真平台搭建了系统仿真模型。不同受端交流故障情况下的仿真结果表明,所提直流过电压协调抑制策略可保证直流电压在安全运行范围,维持系统安全稳定运行。  相似文献   

17.
多落点混合级联直流系统存在特有的模块化多电平换流器(MMC)功率盈余问题。当受端交流系统发生短路故障时,MMC过流、过压将引起MMC阀组闭锁,进一步可能导致系统功率中断。多落点混合级联直流系统整流侧采用电网换相型换流器(LCC)、逆变侧采用LCC与多台MMC级联。针对该系统提出一种适用于受端交流系统故障的故障电流限制方法,在逆变侧MMC控制中引入虚拟阻抗降低故障电流,无需额外添加设备。对虚拟阻抗的控制引入、计算以及投入实现过程进行了详细阐述,并在PSCAD/EMTDC中搭建模型进行仿真分析。结果表明,所设计的虚拟阻抗控制器可以实现故障电流的有效抑制,并防止功率倒送,从而实现混合级联直流系统的交流故障成功穿越和功率可靠传输。  相似文献   

18.
光伏直流升压汇集场站中,光伏列阵经DC/DC升压后汇集,再由DC/AC换流站逆变后接入交流电网。对于多个光伏直流升压场站并网系统,并网DC/AC换流站输出无功电流大小受自身容量与端口电压跌落程度影响,在协调机制不明确情况下,无功整定困难,靠近故障的场站存在脱网风险。为此,在分析各DC/AC换流站无功出力对端口电压影响的基础上,提出了光伏直流升压场站并网系统整体协同低电压穿越控制策略。进入低穿后,DC/AC换流站检测本地端口电压,立即向电网注入无功进行支撑;总控站利用通信获知各换流站的端口电压,进而协调各换流站的无功电流输出额度。同时,在分工况细化协调机制的基础上,对DC/AC换流站无功电流输出进行通用化整定。仿真结果表明,所提控制策略在交流电网发生故障时,能有效协调各DC/AC换流站进行无功补偿,提高系统整体低电压穿越能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号