首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this letter, we study the asymptotic performance of hybrid-selection/maximal-ratio combining (HS/MRC) and postdetection HS/equal-gain combining (HS/EGC) over generalized fading channels for large average signal-to-noise ratios (ASNRs). By evaluating the asymptotic moment generating function of the HS/MRC output SNR at high ASNR, we derive the diversity and coding gains for HS/MRC for a large class of modulation formats and versatile fading conditions, including different types of fading channels and nonidentical SNR statistics across diversity branches. Our analytical results reveal that the diversity gains of HS/MRC and HS/EGC are equivalent to that of MRC, and the difference in the coding gains for different modulation formats is manifested in terms of a modulation factor defined in this letter. Some new analytical results about effects of the number of combined branches for HS/MRC and noncoherent combining loss of HS/EGC are also provided.  相似文献   

2.
Generalized selection combining (GSC), in which the best Lc out of L independent diversity channels are linearly combined has been previously proposed and analyzed for Rayleigh fading channels. GSC is a less complex alternative to maximal ratio combining (MRC) that provides a performance gain over traditional selection combining (SC). Both MRC and SC are special cases of CSC, with Lc=L and Lc=1, respectively. We show that CSC also dramatically reduces the impact of switching rate constraints, whereby a selection must be held for the duration of a packet  相似文献   

3.
In this paper, we investigate a multiple-input-multiple-output (MIMO) scheme combining transmit antenna selection and receiver maximal-ratio combining (the TAS/MRC scheme). In this scheme, a single transmit antenna, which maximizes the total received signal power at the receiver, is selected for uncoded transmission. The closed-form outage probability of the system with transmit antenna selection is presented. The bit error rate (BER) of the TAS/MRC scheme is derived for binary phase-shift keying (BPSK) in flat Rayleigh fading channels. The BER analysis demonstrates that the TAS/MRC scheme can achieve a full diversity order at high signal-to-noise ratios (SNRs), as if all the transmit antennas were used. The average SNR gain of the TAS/MRC is quantified and compared with those of uncoded receiver MRC and space-time block codes (STBCs). The analytical results are verified by simulation. It is shown that the TAS/MRC scheme outperforms some more complex space-time codes of the same spectral efficiency. The cost of the improved performance is a low-rate feedback channel. We also show that channel estimation errors based on pilot symbols have no impact on the diversity order over quasi-static fading channels.  相似文献   

4.
采用两条支路分集接收的相关瑞利衰落信道容量   总被引:5,自引:0,他引:5  
李光球 《电子学报》2003,31(7):1018-1021
本文研究采用两条支路最大比合并(MRC)或选择合并(SC)分集接收的相关瑞利衰落信道理论容量推导恒定发射功率自适应M进制正交幅度调制(M-QAM)的频谱效率,并将它们与独立同分布瑞利信道理论容量进行比较,其结果对收发信机之间无视距分量路径、接收机上分集天线之间的距离小于半个波长的无线通信系统设计具有指导作用.  相似文献   

5.
New closed form error probability expressions for M-arydifferential-phase-shift-keying (MDPSK) with maximal ratio combining (MRC)diversity reception in Nakagami fading, are derived. These expressions involveeasily computable Legendre polynomials and Associated Legendre functions. Bysetting the fading severity parameter m to unity, the new general errorprobability formula reduces to the known results for MDPSK systems in slowRayleigh fading. For binary DPSK, the bit error rate (BER) performance withMRC is compared with known results for selection diversity combining (SDC).It is shown that MRC is more effective than SDC in improving BER performancefor the Nakagami channels, as expected. We also discuss the ranges of thefading severity parameter and diversity order, within which the errorprobability expressions can be computed efficiently.  相似文献   

6.
Two approximations to the Shannon capacity of a maximal-ratio combining (MRC) diversity system are proposed in terms of the diversity factor (DF). Asymptotic analysis shows that the approximations are identical to the true capacity in the low-SNR regime and have the same slope but different power offsets in the high-SNR regime. For Rayleigh-fading environments, the power offset differences are derived and shown to be considerably small quantities. Thus, the DF can be considered as an effective measure of the asymptotic capacity improvement offered by MRC diversity reception in Rayleigh fading channels.  相似文献   

7.
In this paper, closed-form expressions for the capacities per unit bandwidth for generalized Rician fading channels are derived for power and rate adaptation, constant transmit power, channel inversion with fixed rate, and truncated channel inversion adaptation policies. The closed-form solutions are derived for the single antenna reception (without diversity combining) and maximal-ratio combining (MRC) diversity cases. Truncated channel inversion adaptation policy is the best policy for the single antenna reception case, while the channel inversion with fixed rate policy is the best policy for the MRC diversity case. Constant transmit power policy provides the lowest spectral efficiency as compared to the other policies with and without diversity.  相似文献   

8.
Presents predetection and postdetection combining schemes for selection diversity reception with multiple antennas for MM-wave indoor radio channels. For those combining schemes, a reduction in complexity is achieved by limiting the number of combined signals to small values and by increasing the number of received signals. Bit error rate (BER) performance of binary phase shift keying (BPSK) with predetection combining of selected signals (CSS) and BER performance of differential BPSK with postdetection CSS are analyzed for slow fading and Rayleigh-distributed envelope statistics. Predetection maximal ratio combining of signals that comes from a single group or several groups of diversity channels as well as postdetection combining of received signals for groups of channels are considered. In comparing predetection combining with groups (PCG) and predetection combining of the best signals (PCB), we observe that the required SNR for achieving a certain BER is approximatively the same (with PCG having a slight advantage of 0.5 dB) for a given number, N, of diversity channels and L combined signals. Furthermore. PCG is equivalent to PCB for L=N since both techniques then correspond to conventional predetection maximal ratio combining (MRC), PCG and PCB are also equivalent when L=1 as both schemes then correspond to conventional selection combining. A small degradation of approximately 2 dB in the required SNR is observed when postdetection diversity reception with groups (PDG) is used instead of PCG. For L=N, PDG reduces to post detection MRC. The PDG technique is considered more suitable than PCB or PCG for MM-indoor wireless systems  相似文献   

9.
We propose a postdetection phase combining (PC) scheme for the two branch diversity reception of differential phase shift keying (DPSK) over multipath fading channels. The receiver has a differential phase detector (DPD) in each diversity branch, and the combiner weights each detector output in proportion to the vth power of the signal envelope at the detector's input. For π/4-shift QDPSK over frequency-flat Rayleigh fading channels, we find via computer simulation that the optimum weight factor is v=2, and that our simple, practical combining scheme performs almost as well as postdetection maximal ratio combining (MRC). We demonstrate similar relative performances for frequency-selective fading channels and for channels with co-channel interference (CCI)  相似文献   

10.
A performance analysis of two hybrid selective combining/maximal ratio combining (SC/MRC) diversity receivers over Nakagami-m (1960) fading channels with a flat multipath intensity profile is presented and numerically compared with that of the conventional SC and MRC schemes. Numerical results for particular cases of interest show that the bit error rate (BER) degradation arising from the use of hybrid SC/MRC instead of MRC is independent of the average signal-to-noise ratio (SNR) regardless of the severity of the fading and that MRC provides a higher rate of improvement than the hybrid SC/MRC as the severity of fading decreases  相似文献   

11.
In this paper, the optimum decision boundaries for (N, M) differential amplitude phase-shift keying on the Rayleigh-fading channel are analyzed. A postdetection maximal ratio combining (MRC) and weighted maximal ratio combining (WMRC) diversity receivers are proposed. In the Rayleigh-fading channel, assuming a high signal-to-noise ratio and a small normalized Doppler frequency, the analytical optimum decision boundaries are obtained. In addition, it is shown that an outer optimum decision boundary is the inverse of the inner optimum decision boundary. In the proposed MRC receiver, the decision at each branch is made based on the minimum distance criterion. The performance of the MRC receiver is analyzed, in terms of the union bound for bit error probability. The proposed WMRC receiver assigns weighting factors to the decision variable at each branch, based on the optimum decision boundaries. The performance of the WMRC is investigated through computer simulation and compared with those of MRC and equal gain combining (EGC). From the results, the performances of MRC and WMRC are found to be better than those of the EGC receiver on both the Rayleigh- and Rician-fading channels. It is also found that the performance improvement of WMRC over MRC is more pronounced as the number of diversity branches increases  相似文献   

12.
We propose a new approach to outage probability analysis of predetection maximal ratio combining (MRC) diversity reception in Nakagami-m fading channels. We generalize prior work in that we consider L independent cochannel interferers with arbitrary powers and fading parameters as well as the effects of additive white Gaussian noise (AWGN). Our approach results in a general expression for outage probability under very broad assumptions. Moreover, our approach leads to a closed-form expression for outage probability in most cases of interest. We also provide numerical results that demonstrate the performance improvement obtained through MRC diversity combining in the presence of cochannel interferers.  相似文献   

13.
In this paper, we consider the multiple-input multiple-output (MIMO) wireless systems employing maximal ratio combining (MRC) in the absence and presence of multiuser diversity. First, using the well-known moment generating function-based analysis approach, we derive the error performance of the MIMO MRC systems without multiuser diversity over spatially correlated fading channels. Second, we present the average capacity of MIMO MRC systems with multiuser diversity. Numerical results demonstrate the accuracy of our analytical expressions.  相似文献   

14.
This paper derives the symbol error probability for quadrature amplitude modulation(QAM) with L-fold space diversity in Rayleigh fading channels. Two combining techniques, maximal ratio combining(MRC) and selection combining(SC), are considered. The formula for MRC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an additive white Gaussian noise(AWGN) channel over a chi-square distribution with 2L degrees of freedom. The obtained formula overcomes the limitations of the earlier work, which has been limited only to deriving the symbol error rate(SER) of QAM with two branch MRC space diversity. The formula for SC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an AWGN channel over the distribution of the maximum signal-to-noise ratio among all of the diversity channels for SC space diversity. No analysis for QAM with SC space diversity has been reported yet. Analytical results show that the probability of error decreases with the order of diversity. We can also see that the incremental diversity gain per additional branch decreases as the number of branches becomes larger. On the other hand, the performance of 16 QAM with MRC becomes much better than that of SC as the number of branches becomes larger. By giving the order of diversity, L, and the number of signal points, M, we have been able to obtain the SER performance of QAM with general space diversity. These results can be used to determine the order of diversity to achieve the desired SER in land mobile communication system employing QAM modulation.  相似文献   

15.
The improvements achievable using diversity with matched filter NCFSK (and DPSK) receivers operating on log-normal shadowed Nakagami-fading channels are analyzed. Three microdiversity techniques, equal gain combining (EGC), maximal ratio combining (MRC) and selection combining (SC) are compared. The system performances are assessed by considering two measures of coverage; one well suited for mobile users and one well suited for portable users. The detrimental effects of multipath fading in cellular mobile radio systems can be mitigated by using a number of microdiversity paths at the receiver. The effects of shadowing can be mitigated by using a number K of macrodiversity radio ports to serve each cell. The improvements gained by using microdiversity to combat multipath fading and macrodiversity to combat shadowing are investigated. The effects of the fading severity, the number of microdiversity branches at each port L and the number of macrodiversity ports K on the system performance are investigated in detail. The results, in most cases, are obtained by carrying out a single numerical integration (for any order of diversity). The results show that although MRC gives the best performance, EGC and SC perform nearly as well for dual (L=2) diversity. For larger L, i.e., L⩾4, the relative performance of SC deteriorates substantially whereas the performance of EGC remains close to that of MRC. Also, our results show that as the fading gets less severe, the performance of EGC gets closer to that of MRC, while the performance of SC worsens compared to that of MRC  相似文献   

16.
利用高斯Q函数的高阶次幂在最大比合并(MRC)分集接收瑞利衰落信道上统计平均的结果,推导了Nakagami 衰落信道上采用组合发射选择合并(SC)/接收 MRC 天线分集的相干检测差分编码四相相移键控(DE-QPSK)的平均误符号率(ASER)精确表达式。利用高斯Q函数的近似表达式和矩生成函数(MGF)方法,推导了Nakagami衰落信道上采用组合SC/MRC天线分集的相干检测DE-QPSK 的ASER近似表达式。通过数值计算和仿真,验证了DE-QPSK的ASER精确表达式的正确性以及近似表达式的准确性。利用精确表达式和近似表达式可研究收发天线数目和衰落参数对DE-QPSK的ASER性能的影响,为实际SC/MRC天线分集方案的设计提供了理论指导。  相似文献   

17.
The average symbol-error rate and outage probability of threshold-based hybrid selection/maximal-ratio combining (T-HS/MRC) in generalized fading environments are analyzed. A T-HS/MRC combiner chooses the combined branches according to a predetermined normalized threshold and the strength of the instantaneous signal-to-noise ratio (SNR) of each branch. Therefore, the number of combined branches is a random variable, rather than a fixed number, as in conventional hybrid selection/maximal-ratio combining (H-S/MRC). Using the moment generating function method, a unified analysis of T-HS/MRC over various slow and frequency-nonselective fading channels is presented. Both independent, identically distributed and independent, nonidentically distributed diversity branches are considered. The derivation allows different M-ary linear modulation schemes. The theory is illustrated using coherent M-ary phase-shift keying in Nakagami-m fading as an example. It is shown that previous published results are incorrect.  相似文献   

18.
A new type of hybrid selection/equal-gain combining (HS/EGC) scheme is proposed and analyzed. This scheme dynamically selects the best combination of branches by a simple test and combines them in equal-gain combining (EGC) manner. As a result, the scheme always shows better performance than conventional EGC and selection diversity (SD), and close to maximal-ratio combining (MRC). As an exemplary performance indicator, its average output SNR for dual correlated Nakagami-m fading channels is calculated and demonstrated in comparison with other diversity schemes  相似文献   

19.
In this paper, optimum and suboptimum diversity combining schemes for coherent and differential M-ary phase-shift keying (M-PSK) transmission impaired by general Ricean fading and impulsive Class-A noise are derived and analyzed. The proposed suboptimum coherent combining (SCC) and suboptimum noncoherent combining (SNC) schemes yield similar performance as the corresponding optimum combining schemes but require a lower computational complexity. In addition, the novel SCC and SNC strategies achieve large performance gains over conventional maximum ratio combining (MRC) and equal gain combining (EGC), respectively. For MRC and EGC, respectively, we also provide a performance analysis for coherent and differential M-PSK transmissions over general Ricean fading channels with Class-A noise. Furthermore, tight performance upper bounds for the proposed optimum and suboptimum combining schemes are derived.  相似文献   

20.
Closed form expressions for the average probability of packet error (PPE) are presented for no diversity, maximum ratio combining (MRC), selection combining (SC) and switch and stay combining (SSC) diversity schemes. The average PPE for the no diversity case is obtained in two alternative expressions assuming arbitrarily correlated Nakagami and Rician fading channels. For the MRC case, L diversity branches are considered and the channel samples are assumed to follow Nakagami distribution and to be arbitrarily correlated in both time and space. For the SC diversity scheme with L diversity branches, two bounds on the average PPE are derived for both slow and fast fading channels. The average PPE in this case is obtained in an infinite integral form for Nakagami channels while it is reduced to a closed form expression for the Rayleigh case. The average PPE is also derived in the case of SSC diversity with dual branches for both slow and fast Rayleigh fading channels. The new formulas are applicable for all modulation schemes where the conditional probability of error has an exponential dependence on the signal‐to‐noise ratio. The average PPE is then used to obtain a modified expression for the throughput for network protocols. In general, the diversity gain exhibits a little diminishing effect as the number of diversity branches increases. In addition, the system is found to be more sensitive to the space correlation than to the time correlation. The effects of different system parameters and diversity schemes are studied and discussed. Specific figures about the system performance are also provided. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号