首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated and compared three approaches for shotgun protein identification by combining MS and MS/MS information using LTQ-Orbitrap high mass accuracy data. In the first approach, we employed a unique mass identifier method where MS peaks matched to peptides predicted from proteins identified from an MS/MS database search are first subtracted before using the MS peaks as unique mass identifiers for protein identification. In the second method, we used an accurate mass and time tag method by building a potential mass and retention time database from previous MudPIT analyses. For the third method, we used a peptide mass fingerprinting-like approach in combination with a randomized database for protein identification. We show that we can improve protein identification sensitivity for low-abundance proteins by combining MS and MS/MS information. Furthermore, "one-hit wonders" from MS/MS database searching can be further substantiated by MS information and the approach improves the identification of low-abundance proteins. The advantages and disadvantages for the three approaches are then discussed.  相似文献   

2.
Fu Q  Li L 《Analytical chemistry》2005,77(23):7783-7795
A stable-isotope dimethyl labeling strategy was previously shown to be a useful tool for quantitative proteomics. More recently, N-terminal dimethyl labeling was also reported for peptide sequencing in combination with database searching. Here, we extend these previous studies by incorporating N-terminal isotopic dimethylation for de novo sequencing of neuropeptides directly from tissue extract without any genomic information. We demonstrated several new sequencing applications of this method in addition to the identification of the N-terminal residue using the enhanced a(1) ion. The isotopic labeling also provides easier and more confident de novo sequencing of peptides by comparing similar MS/MS fragmentation patterns of the isotopically labeled peptide pairs. The current study on neuropeptides shows several distinct fragmentation patterns after N-terminal dimethylation which have not been reported previously. The y((n-1)) ion is enhanced in multiply charged peptides and is weak or missing in singly charged peptides. The MS/MS spectra of singly charged peptides are simplified due to the enhanced N-terminal fragments and suppressed internal fragments. The neutral loss of dimethylamine is also observed. The mechanisms for the above fragmentations are proposed. Finally, the structures of the immonium ion and related ions of N(alpha), N(epsilon)-tetramethylated lysine and N(epsilon)-dimethylated lysine are explored.  相似文献   

3.
In this work, we describe the application of a stable isotope amino acid (lysine) labeling in conjunction with data-dependent multiplexed tandem mass spectrometry (MS/MS) to facilitate the characterization and identification of peptides from proteomic (global protein) digests. Lysine auxotrophic yeast was grown in the presence of 13C-labeled or unlabeled lysine and combined after harvesting in equal proportions. Endoproteinase LysC digestion of the cytosolic fraction produced a global proteomic sample, consisting of heavy/light labeled peptide pairs. Then data-dependent multiplexed-MS/MS was applied to simultaneously select and dissociate only labeled peptide ion pairs. The approach allows differentiation between N-terminal (e.g., b-type ions) and C-terminal fragment ions (e.g., y-type ions) in resulting tandem mass spectra, as well as the capability of differentiation between near-isobaric glutamine and lysine residues. We also describe the utility of peptide composition and fragment information to support peptide identifications and examine the potential application of lysine labeling for differential quantitative protein analysis.  相似文献   

4.
The aim of the work was to explore usefulness of artificial neural network (ANN) analysis for the evaluation of proteomics data. The analysis was applied to the data generated by the widely used protein identification program Sequest, completed with several structural parameters readily calculated from peptide molecular formulas. Proteins from yeast cells were identified based on the MS/MS spectra of peptides. The constructed ANN was demonstrated to classify automatically as either "good" or "bad" the peptide MS/MS spectra otherwise classified manually. An appropriately trained ANN proves to be a high-throughput tool facilitating examination of Sequest's results. ANNs are recommended as a means of automatic processing of large amounts of MS/MS data, which normally must be considered in the analysis of complex mixtures of proteins in proteomics.  相似文献   

5.
Pan S  Gu S  Bradbury EM  Chen X 《Analytical chemistry》2003,75(6):1316-1324
Identification of proteins with low sequence coverage using mass spectrometry (MS) requires tandem MS/MS peptide sequencing. It is very challenging to obtain a complete or to interpret an incomplete tandem MS/MS spectrum from fragmentation of a weak peptide ion signal for sequence assignment. Here, we have developed an effective and high-throughput MALDI-TOF-based method for the identification of membrane and other low-abundance proteins with a simple, one-dimensional separation step. In this approach, several stable isotope-labeled amino acid precursors were selected to mass-tag, in parallel, the human proteome of human skin fibroblast cells in a residue-specific manner during in vivo cell culturing. These labeled residues can be recognized by their characteristic isotope patterns in MALDI-TOF MS spectra. The isotope pattern of particular peptides induced by the different labeled precursors provides information about their amino acid compositions. The specificity of peptide signals in a peptide mass mapping is thus greatly enhanced, resolving a high degree of mass degeneracy of proteolytic peptides derived from the complex human proteome. Further, false positive matches in database searching can be eliminated. More importantly, proteins can be accurately identified through a single peptide with its m/z value and partial amino acid composition. With the increased solubility of hydrophobic proteins in SDS, we have demonstrated that our approach is effective for the identification of membrane and low-abundant proteins with low sequence coverage and weak signal intensity, which are often difficult for obtaining informative fragment patterns in tandem MS/MS peptide sequencing analysis.  相似文献   

6.
Subfemtomole peptide sequence analysis has been achieved using microcapillary HPLC columns, with integrated nanoelectrospray emitters, coupled directly to a Fourier transform ion cyclotron resonance mass spectrometer. Accurate mass (+/-0.010 Da) peptide maps are generated from a standard six-protein digest mixture, whose principle components span a concentration dynamic range of 1000:1. Iterative searches against approximately 189000 entries in the OWL database readily identify each protein, with high sequence coverage (20-60%), from as little as 10 amol loaded on-column. In addition, a simple variable-flow HPLC apparatus provides for on-line tandem mass spectrometric analysis of tryptic peptides at the 400-amol level. MS/MS data are searched against approximately 280000 entries in a nonredundant protein database using SEQUEST. Accurate precursor and product ion mass information readily identifies primary amino acid sequences differing by asparagine vs aspartic acid (deltam = 0.98 Da) and glutamine vs lysine (deltam = 0.036 Da).  相似文献   

7.
The goal of this study was the development of N-terminal tags to improve peptide identification using high-throughput MALDI-TOF/TOF MS. Part 1 of the study was focused on the influence of derivatization on the intensities of MALDI-TOF MS signals of peptides. In part 2, various derivatization approaches for the improvement of peptide fragmentation efficiency in MALDI-TOF/TOF MS are explored. We demonstrate that permanent cation tags, while significantly improving signal intensity in the MS mode, lead to severe suppression of MS/MS fragmentation, making these tags unsuitable for high-throughput MALDI-TOF/TOF MS analysis. In the present work, it was found that labeling with Alexa Fluor 350, a coumarin tag containing a sulfo group, along with guanidation of epsilon-amino groups of Lys, could enhance unimolecular fragmentation of peptides with the formation of a high-intensity y-ion series, while the peptide intensities in the MS mode were not severely affected. LC-MALDI-TOF/TOF MS analysis of tryptic peptides from the SCX fractions of an E. coli lysate revealed improved peptide scores, a doubling of the total number of peptides, and a 30% increase in the number of proteins identified, as a result of labeling. Furthermore, by combining the data from native and labeled samples, confidence in correct identification was increased, as many proteins were identified by different peptides in the native and labeled data sets. Additionally, derivatization was found not to impair chromatographic behavior of peptides. All these factors suggest that labeling with Alexa Fluor 350 is a promising approach to the high-throughput LC-MALDI-TOF/TOF MS analysis of proteomic samples.  相似文献   

8.
Nonenzymatic protein glycation is caused by a Schiff's base reaction between the aldehyde groups of reducing sugars and the primary amines of proteins. A reversed-phase liquid chromatography method followed by a neutral loss scan mass spectrometric method was developed for the screening of glycation in proteins. The neutral loss scan was based on a unique sugar moiety neutral loss (-162 Da) that we observed in the fragmentation spectra of glycated peptides on Q-Tof type mass spectrometers. The collision energy was optimized for this neutral loss using a glycated synthetic peptide, and 20 eV was found to be the optimum collision energy. The neutral loss scan experiment was composed of two segments. In the first segment, the glycated peptides were identified based on the signature neutral loss of 162 Da when the collision energy was elevated to 20 eV. In the second segment, the glycated peptides were selected as the parent ions and fragmented at higher collision energy to break the peptide bonds. The fragmentation spectra of the selected glycated peptides revealed both the amino acid sequences and the sites of glycation. This neutral loss scan method was used to study the glycation in human serum albumin (HSA). The glycation sites in HSA were identified based on the retention time shift of glycated peptides, the mass accuracy from the MS scan, the signature neutral loss, and MS/MS information. Using this method, we were able to identify that 31 lysine residues were partially glycated from the glycated HSA sample, which has a total of 59 lysine residues.  相似文献   

9.
A novel MS/MS-based analysis strategy using isotopomer labels, referred to as "tandem mass tags" (TMTs), for the accurate quantification of peptides and proteins is described. The new tags are designed to ensure that identical peptides labeled with different TMTs exactly comigrate in all separations. The tags require novel methods of quantification analysis using tandem mass spectrometry. The new tags and analysis methods allow peptides from different samples to be identified by their relative abundance with greater ease and accuracy than other methods. The new TMTs permit simultaneous determination of both the identity and relative abundances of peptide pairs using a collision induced dissociation (CID)-based analysis method. Relative abundance measurements made in the MS/MS mode using the new tags are accurate and sensitive. Compared to MS-mode measurements, a very high signal-to-noise ratio is achieved with MS/MS based detection. The new tags should be applicable to a wide variety of peptide isolation methods.  相似文献   

10.
Protein ubiquitination plays an important role in the degradation and other functional regulation of cellular proteins in organisms ranging from yeasts to mammals. Trypsin digestion of ubiquitin conjugated proteins produces diglycine branched peptides in which the C-terminal Gly-Gly fragment of ubiquitin is attached to the epsilon-amino group of a modified lysine residue within the peptide. This provides a platform for mapping ubiquitination sites using mass spectrometry. Here we report the development of a novel strategy for determining posttraslational protein ubiquitination based on the N-terminal sulfonation of diglycine branched peptides. In contrast to conventional tandem MS spectra of native tryptic peptides, MALDI MS/MS analysis of a sulfonated tryptic peptide containing a diglycine branch generates a unique spectrum composed of a signature portion and a sequence portion. The signature portion of the spectrum consists of several intense ions resulting from the elimination of the tags, the N-terminal residues at the peptide and the branch, and their combination. This unique ion distribution pattern can distinguish ubiquitination modificatons from others and can identify the first N-terminal residues of the peptides as well. The sequence portion consists of an exclusive series of y-type ions and y' ions (differing by the loss of one glycine residue from the sulfonated diglycine branch) that can directly reveal the amino acid sequence of the peptide and the precise location of the ubiquitination site. The technique is demonstrated for a series of synthetic peptides and is validated by a model protein, tetraubiquitin. Our results show that the MALDI MS/MS analysis of sulfonated tryptic peptides can provide a highly effective method for the determination of ubiquitination substrates, ubiquitination sites on protein targets, and modification sites on ubiquitins themselves.  相似文献   

11.
We present a statistical model to estimate the accuracy of peptide assignments to tandem mass (MS/MS) spectra made by database search applications such as SEQUEST. Employing the expectation maximization algorithm, the analysis learns to distinguish correct from incorrect database search results, computing probabilities that peptide assignments to spectra are correct based upon database search scores and the number of tryptic termini of peptides. Using SEQUEST search results for spectra generated from a sample of known protein components, we demonstrate that the computed probabilities are accurate and have high power to discriminate between correctly and incorrectly assigned peptides. This analysis makes it possible to filter large volumes of MS/MS database search results with predictable false identification error rates and can serve as a common standard by which the results of different research groups are compared.  相似文献   

12.
Immobilized metal ion affinity chromatography (IMAC) is a useful method to selectively isolate and enrich phosphopeptides from a peptide mixture. Mass spectrometry is a very suitable method for exact molecular weight determination of IMAC-isolated phosphopeptides, due to its inherent high sensitivity. Even exact molecular weight determination, however, is not sufficient for identification of the phosphorylation site if more than one potential phosphorylation site is present on a peptide. The previous method of choice for sequencing the affinity-bound peptides was electrospray tandem mass spectrometry (ESI-MS/MS). This method required elution and salt removal prior to MS analysis of the peptides, which can lead to sample loss. Using a matrix-assisted laser desorption/ionization (MALDI) source coupled to an orthogonal injection quadrupole time-of-flight (QqTOF) mass spectrometer with true MS/MS capabilities, direct sequencing of IMAC-enriched peptides has been performed on IMAC beads applied directly to the MALDI target. The utility of this new method has been demonstrated on a protein with unknown phosphorylation sites, where direct MALDI-MS/MS of the tryptic peptides bound to the IMAC beads resulted in the identification of two novel phosphopeptides. Using this technique, the phosphorylation site determination is unambiguous, even with a peptide containing four potentially phosphorylated residues. Direct analysis of phosphorylated peptides on IMAC beads does not adversely affect the high-mass accuracy of an orthogonal injection QqTOF mass spectrometer, making it a suitable technique for phosphoproteomics.  相似文献   

13.
Comparing the relative abundance of each protein present in two or more complex samples can be accomplished using isotope-coded tags incorporated at the peptide level. Here we describe a chemical labeling strategy for the incorporation of a single isotope label per peptide, which is completely sequence-independent so that it potentially labels every peptide from a protein including those containing posttranslational modifications. It is based on a gentle chemical labeling strategy that specifically labels the N-terminus of all peptides in a digested sample with either a d5- or d0-propionyl group. Lysine side chains are blocked by guanidination prior to N-terminal labeling to prevent the incorporation of multiple labels. In this paper, we describe the optimization of this N-terminal isotopic tagging strategy and validate its use for peptide-based protein abundance measurements with a 10-protein standard mixture. Using a results-driven strategy, which targets proteins for identification based on MALDI TOF-MS analysis of isotopically labeled peptide pairs, we also show that this labeling strategy can detect a small number of differentially expressed proteins in a mixture as complex as a yeast cell lysate. Only peptides that show a difference in relative abundance are targeted for identification by tandem MS. Despite the fact that many peptides are quantitated, only those few showing a difference in abundance are targeted for protein identification. Proteins are identified by either targeted LC-ES MS/MS or MALDI TOF/TOF. Identifications can be accomplished equally well by either technique on the basis of multiple peptides. This increases the confidence level for both identification and quantitation. The merits of ES MS/MS or MALDI MS/MS for protein identification in a results-driven strategy are discussed.  相似文献   

14.
The goal of this study was the development of N-terminal tags to improve peptide identification using high-throughput MALDI-TOF MS and MS/MS. The proposed tags, commercially available fluorescent derivatives of coumarin, can be advantageous for peptide analysis in both MS and MS/MS modes. This paper, part 1, will focus on the influence of derivatization on the intensities of MALDI-TOF MS signals of peptides. Labeling peptides with tags containing the coumarin core was found to enhance the intensities of peptide peaks (in some cases over 40-fold) in MALDI-TOF MS using CHCA and 2,5-DHAP matrixes. The signal enhancement was found to be peptide- and matrix-dependent, being the most pronounced for hydrophilic peptides. No correlation was found between the UV absorptivity of the tags at the excitation wavelengths typical for UV-MALDI and the magnitude of the signal enhancement. Interestingly, peptides labeled with Alexa Fluor 350, a coumarin derivative containing a sulfo group (i.e., bearing strong negative charge), showed a 5-15-fold increase in intensity of MALDI MS signal in the positive ion mode, relative to the underivatized peptides, when 2,5-DHAP was used as the matrix. The Alexa Fluor 350 tag yielded a significantly higher signal relative to that for the CAF tag, likely due to the increased hydrophobicity of the coumarin structure. With 2,5-DHB, a decrease of MALDI MS signal was observed for all coumarin-labeled peptides, again relative to the unlabeled species. These findings support the hypothesis that derivatization with coumarin, a relatively hydrophobic structure, improves incorporation of hydrophilic peptides into hydrophobic MALDI matrixes, such as CHCA and 2,5-DHAP.  相似文献   

15.
We describe the impact of advances in mass measurement accuracy, +/- 10 ppm (internally calibrated), on protein identification experiments. This capability was brought about by delayed extraction techniques used in conjunction with matrix-assisted laser desorption ionization (MALDI) on a reflectron time-of-flight (TOF) mass spectrometer. This work explores the advantage of using accurate mass measurement (and thus constraint on the possible elemental composition of components in a protein digest) in strategies for searching protein, gene, and EST databases that employ (a) mass values alone, (b) fragment-ion tagging derived from MS/MS spectra, and (c) de novo interpretation of MS/MS spectra. Significant improvement in the discriminating power of database searches has been found using only molecular weight values (i.e., measured mass) of > 10 peptide masses. When MALDI-TOF instruments are able to achieve the +/- 0.5-5 ppm mass accuracy necessary to distinguish peptide elemental compositions, it is possible to match homologous proteins having > 70% sequence identity to the protein being analyzed. The combination of a +/- 10 ppm measured parent mass of a single tryptic peptide and the near-complete amino acid (AA) composition information from immonium ions generated by MS/MS is capable of tagging a peptide in a database because only a few sequence permutations > 11 AA's in length for an AA composition can ever be found in a proteome. De novo interpretation of peptide MS/MS spectra may be accomplished by altering our MS-Tag program to replace an entire database with calculation of only the sequence permutations possible from the accurate parent mass and immonium ion limited AA compositions. A hybrid strategy is employed using de novo MS/MS interpretation followed by text-based sequence similarity searching of a database.  相似文献   

16.
In vivo deamidation characterization of monoclonal antibody by LC/MS/MS   总被引:3,自引:0,他引:3  
The spontaneous nonenzymatic deamidation of glutaminyl and asparaginyl residues of peptides and proteins has been observed both in vitro and in vivo. Deamidation may change the structure and function of a peptide or protein, potentially resulting in decreased bioactivity, as well as alterations in pharmacokinetics and antigenicity of the protein pharmaceutical. Therefore, it is necessary to monitor the effect of storage and formulation conditions on deamidation of a protein drug candidate. Of particular interest is the investigation of in vivo deamidation mechanisms of protein drug candidates. Several methods are available to characterize the deamidation of peptides and proteins. We present here a LC/MS/MS method used to evaluate the deamidation of an antibody after in vivo administration. A humanized monoclonal IgG1 antibody (MAb) has several "hot spots" for spontaneous deamidation. One site, amino acid residue Asn55 located in the CDR2 region of the heavy chain, is of particular interest since deamidation at this site greatly decreases the binding activity. MAb was administered to cynomolgus monkeys by intravenous and subcutaneous routes. At various times after dosing, monkey serum was prepared and MAb captured by the immobilized antigen or a goat anti-human IgG Fcgamma antibody. The captured MAb was treated with trypsin followed by endoproteinase Glu-C. The digests were separated on RP-HPLC and analyzed by MS/MS on Q-Tof Global mass spectrometer. Using this method, we were able to determine the deamidation half-life of amino acid residue Asn55 in vivo and the ratio of the deamidated derivatives, i.e., isoAsp55 and Asp55. The method is rapid and sensitive with low-nanogram quantities of protein detected in the biological matrix.  相似文献   

17.
Young JB  Li L 《Analytical chemistry》2007,79(15):5927-5934
An automated off-line liquid chromatography-matrix-assisted laser desorption ionization (LC-MALDI) interface capable of coupling both capillary and microbore LC separations with MALDI mass spectrometry (MS) and tandem mass spectrometry (MS/MS) has been developed. The interface is a combination of two concepts: analyte concentration from heated hanging droplets and impulse-driven droplet deposition of LC fractions onto a MALDI sample plate. At room temperature the interface allows the coupling of capillary LC separations (i.e., flow rate of <5 microL/min) with MALDI MS. With heating, it can be used to combine microbore LC operated at a relatively high flow rate of up to 50 microL/min with MALDI MS. The collected fractions can be analyzed by MALDI MS and MS/MS instruments, such as time-of-flight (TOF) and quadrupole-TOF MS. Performance of the interface was examined using several peptide and protein standards. It was shown that, using MALDI-TOF MS, [GLU1]-fibrinopeptide B could be detected with a total injection amount of 5 fmol to microbore LC. Chromatographic performance was also monitored. A peak width of 12 s at half-height for [GLU1]-fibrinopeptide B showed no evidence of band broadening due to the interface. The ability of the interface to mitigate ion suppression was studied using a mixture of 100 fmol of [GLU1]-fibrinopeptide B and 10 pmol of cytochrome c tryptic digest. Although fully suppressed under direct MALDI conditions, LC-MALDI analysis was able to detect the 100 fmol peptide with 10 s fraction collection. Finally, the ability to inject relatively large sample amounts to improve detectability of low-abundance peptides was illustrated in the analysis of phosphopeptides from alpha-casein tryptic digests. A digest loaded on column to 2.4 microg and analyzed by LC-MALDI MS/MS resulted in 82% sequence coverage and detection of all nine phosphoserine residues. It is concluded that, being able to handle both high- and low-flow LC separations, the impulse-driven heated-droplet interface provides the flexibility to carry out MALDI analysis of peptides and proteins depending on the information sought after, analysis speed, and sample size.  相似文献   

18.
A novel liquid-liquid extraction (LLE) procedure was investigated for preparation of peptide and protein samples for matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). LLE using ethyl acetate as the water-immiscible organic solvent enabled segregation of hydrophobic and hydrophilic polypeptides in mixtures, thereby reducing the complexity of mass spectra obtained by MALDI MS. The LLE technique was optimized for rapid and sensitive in situ (on-target) sample preparation for MALDI MS analysis of proteins and peptides at low-picomole and subpicomole levels. Addition of MALDI matrix to the organic solvent enhanced the efficiency of the LLE-MALDI MS method for analysis of hydrophobic peptides and proteins. LLE-MALDI MS enabled the detection of the hydrophobic membrane protein bacteriorhodopsin as a component in a simple protein mixture. Peptide mixtures containing phosphorylated, glycosylated, or acylated peptides were successfully separated and analyzed by the in situ LLE-MALDI MS technique and demonstrate the potential of this method for enhanced separation and structural analysis of posttranslationally modified peptides in proteomics research.  相似文献   

19.
We report here the application of electrospray ionization tandem mass spectrometry for the characterization of protein ubiquitylation, an important posttranslational modification of cellular proteins. Trypsin digestion of ubiquitin-conjugated proteins produces diglycine branched peptides containing the modification sites. Chemical derivatization by N-terminal sulfonation was carried out on several model peptides for the formation of a characteristic fragmentation pattern in their MS/MS analysis. The fragmentation of derivatized singly charged peptides results in a product ion distribution similar to that already observed by MALDI-TOF MS/MS. Signature fragments distinguished the diglycine branched peptides from other modified and unmodified peptides, while the sequencing product ions reveal the amino acid sequence and the location of the ubiquitylation site. Doubly charged peptide derivatives fragment in a somewhat different manner, but several fragments characteristic to diglycine branched peptides were observed under low collision energy conditions. These signature peaks can also be used to identify peptides containing ubiquitylation sites. In addition, a marker ion corresponding to a glycine-modified lysine residue produced by high-energy fragmentation provides useful information for identity verification. The method is demonstrated by the analysis of three ubiquitin-conjugated proteins using LC/MS/MS.  相似文献   

20.
A very high pressure liquid chromatography (VHPLC) system was constructed by modifying a commercially available pump in order to achieve pressures in excess of 1,200 bar (17,500 psi). A computer-controlled low-pressure mixer was used to generate solvent gradients. Protein digests were rapidly analyzed by reversed-phase VHPLC with linear solvent gradients coupled to either a tandem mass spectrometer using electrospray ionization or a UV/visible detector. The separations were performed at pressures ranging from 790 (11,500 psi) to 930 bar (13,500 psi) in 22-cm-long capillary columns packed with C18-modified 1.5-microm nonporous silica particles. A digest of bovine serum albumin (BSA) was analyzed by the VHPLC system connected to a mass spectrometer in MS mode. An analysis of 12.5 fmol of sample gave signal-to-noise ratios of tryptic peaks greater than 10:1 in the base peak plot mass chromatogram. This system was also used to analyze a proteolytic digest of a rat liver protein excised from a 2-D gel separation of a liver tissue lysate. For this analysis, the mass spectrometer was set up to perform data-dependent scanning (automated switching from MS mode to MS/MS mode when a peak was detected) for peptide sequencing and protein identification by database searching. The results of this analysis are compared to an analysis performed on the same sample using the nanoelectrospray-MS/MS technique. Though both techniques were able to identify the unknown protein, the VHPLC method gave twice as many sequenced peptides as nanoelectrospray and improved the signal-to-noise ratio of the spectra by at least a factor of 10. Direct comparisons with nanoelectrospray for MS and MS/MS data acquisition from a BSA digest were made. These comparisons show enhancements of greater than 20-fold for VHPLC over nanoelectrospray. In addition, the VHPLC/MS/MS data acquisition was accomplished in an automated manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号