首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3D monoliths have undergone great progress in the past decades in scientific and engineering fields. Especially, compressible and elastic 3D monoliths (CEMs) hold great promise in a series of applications, such as pressure/strain sensing, energy storage, oil/water separation, and thermal insulation, attributed to their unique mechanical properties and multifunctionality (e.g., conductivity, thermal stability, and high adsorption capacity). Recently, plenty of advanced CEMs have been developed from 1D and 2D building blocks, polymers, and biomass via various methods. Herein, the latest progress in controllable design and preparation of advanced CEMs, which mainly refer to aerogels, sponges, and foams, are reviewed in terms of their structural units and applications. The relationship between structure and mechanical performances of CEMs is discussed. Moreover, their applications in sensing, energy storage and conversion, water treatment, fire‐resistance, and electromagnetic interface shielding are presented. Finally, the challenges and future opportunities of CEMs are also discussed.  相似文献   

2.
Reciprocals and reciprocal square roots are used in several digital signal processing, multimedia, and scientific computing applications. This paper presents high-speed methods for computing reciprocals and reciprocal square roots. These methods use a table lookup, operand modification, and multiplication to obtain an initial approximation. This is followed by a modified Newton-Raphson iteration, which improves the accuracy of the initial approximation. The initial approximation and Newton-Raphson iteration employ specialized hardware to reduce the delay, area, and power dissipation. The application of these methods is illustrated through the design of reciprocal and reciprocal square root units for operands in the IEEE single precision format. These designs are pipelined to produce a new result every clock cycle. Kent Wires received a B.S. degree in Electrical Engineering from Cornell University, Ithaca, NY in 1996, and M.S. and Ph.D. degrees in Electrical Engineering from Lehigh University, Bethlehem, PA, in 1997 and 2001, respectively. From 1998 to 2001, he was a Member of Technical Staff at Lucent Technologies, Allentown, PA, where he was a member of the Advanced DSP Architectures and Compilers Group. He is currently a Senior Member of Technical Staff at Agere Systems, Allentown, PA, where he is a systems architect focusing on media streaming and network protocol techniques. His current research interests include computer arithmetic, media streaming techniques, efficient processor modeling techniques, and network processor architectures and protocols. Michael Schulte received a B.S. degree in Electrical Engineering fromthe University of Wisconsin-Madison in 1991, and M.S. and Ph.D. degrees in Electrical Engineering from the University of Texas at Austin in 1992 and 1996, respectively. From 1996 to 2002, he was an assistant and associate professor at Lehigh University, where he directed the Computer Architecture and Arithmetic Research Laboratory. In 1997, he received a NSF CAREER Award to research hardware support for accurate and reliable numerical computations. Prof. Schulte has consulted for or had joint research projects with Sandbridge Technologies, IBM, Sun Microsystems, ARM, Lucent Technologies, Agere Systems, MIPS Technologies, and Sandia National Laboratories. He is currently an assistant professor at the University of Wisconsin-Madison, where he leads the Madison Embedded Systems and Architectures Group. His research interests include high-performance embedded processors, computer architecture, domain-specific systems, computer arithmetic, and wireless security. He is a senior member of the IEEE and the IEEE Computer Society, and an associate editor for the IEEE Transactions on Computers and the Journal of VLSI Signal Processing.  相似文献   

3.
Graphene, a two‐dimensional, single‐atom‐thick carbon crystal arranged in a honeycomb lattice, shows extraordinary electronic, mechanical, thermal, optical, and optoelectronic properties, and has great potential in next‐generation electronics, optics, and optoelectronics. Graphene and graphene‐based nanomaterials have witnessed a very fast development of both fundamental and practical aspects in optics and optoelectronics since 2008. In this Feature Article, the synthesis techniques and main electronic and optical properties of graphene‐based nanomaterials are introduced with a comprehensive view. Recent progress of graphene‐based nanomaterials in optical and optoelectronic applications is then reviewed, including transparent conductive electrodes, photodetectors and phototransistors, photovoltaics and light emitting devices, saturable absorbers for ultrafast lasers, and biological and photocatalytic applications. In the final section, perspectives are given and future challenges in optical and optoelectronic applications of graphene‐based nanomaterials are addressed.  相似文献   

4.
An important objective of next-generation wireless networks is to provide quality of service (QoS) guarantees. This requires a simple and efficient wireless channel model that can easily translate into connection-level QoS measures such as data rate, delay and delay-violation probability. To achieve this, in Wu and Negi (IEEE Trans. on Wireless Communications 2(4) (2003) 630–643), we developed a link-layer channel model termed effective capacity, for the setting of a single hop, constant-bit-rate arrivals, fluid traffic, and wireless channels with negligible propagation delay. In this paper, we apply the effective capacity technique to deriving QoS measures for more general situations, namely, (1) networks with multiple wireless links, (2) variable-bit-rate sources, (3) packetized traffic, and (4) wireless channels with non-negligible propagation delay. Dapeng Wu received B.E. in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1990, M.E. in Electrical Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1997, and Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University, Pittsburgh, PA, in 2003. From July 1997 to December 1999, he conducted graduate research at Polytechnic University, Brooklyn, New York. During the summers of 1998, 1999 and 2000, he conducted research at Fujitsu Laboratories of America, Sunnyvale, California, on architectures and traffic management algorithms in the Internet and wireless networks for multimedia applications. Since August 2003, he has been with Electrical and Computer Engineering Department at University of Florida, Gainesville, FL, as an Assistant Professor. His research interests are in the areas of networking, communications, multimedia, signal processing, and information and network security. He received the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best Paper Award for Year 2001. Currently, he is an Associate Editor for the IEEE Transactions on Vehicular Technology and Associate Editor for International Journal of Ad Hoc and Ubiquitous Computing. He served as Program Chair for IEEE/ACM First International Workshop on Broadband Wireless Services and Applications (BroadWISE 2004); and as TPC member of over 20 conferences such as IEEE INFOCOM'05, IEEE ICC'05, IEEE WCNC'05, and IEEE Globecom'04. He is Vice Chair of Mobile and wireless multimedia Interest Group (MobIG), Technical Committee on Multimedia Communications, IEEE Communications Society. He is a member of the Award Committee, Technical Committee on Multimedia Communications, IEEE Communications Society. He is also Director of Communications, IEEE Gainesville Section. Rohit Negi received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Bombay, India in 1995. He received the M.S. and Ph.D. degrees from Stanford University, CA, USA, in 1996 and 2000 respectively, both in Electrical Engineering. He has received the President of India Gold medal in 1995. Since 2000, he has been with the Electrical and Computer Engineering department at Carnegie Mellon University, Pittsburgh, PA, USA, where he is an Assistant Professor. His research interests include signal processing, coding for communications systems, information theory, networking, cross-layer optimization and sensor networks.  相似文献   

5.
6.
Principles and applications of phosphors in cathode-ray tubes are discussed. Among the basic parameters covered are: back-scattering, secondary emission, penetration, electronic transitions, dead voltage and energy, and optical efficiencies. Various relevant aspects of television kinescopes are discussed, including commercially used phosphor characteristics and screening techniques, radar tubes, image tubes, voltage-dependent color displays, flying-spot and beam-indexing tubes, projection, printing, and infrared stimulation systems. Colorimetry and photometry, as applied to phosphors, are discussed, including the CIE and UCS systems.  相似文献   

7.
In this paper, the performance of selected error-control schemes based on forward error-control (FEC) coding for H.263+ video transmission over an additive white Gaussian noise (AWGN) channel is studied. Joint source and channel coding (JSCC) techniques that employ single-layer and 2-layer H.263+ coding in conjunction with unequal error protection (UEP) to combat channel errors are quantitatively compared. Results indicate that with appropriate joint source and channel coding, tailored to the respective layers, FEC-based error control in combination with 2-layer video coding techniques can lead to more acceptable quality for wireless video delivery in the presence of channel impairments. Yong Pei is currently a tenure-track assistant professor in the Computer Science and Engineering Department, Wright State University, Dayton, OH. Previously he was a visiting assistant professor in the Electrical and Computer Engineering Department, University of Miami, Coral Gables, FL. He received his B.S. degree in electrical power engineering from Tsinghua University, Beijing, in 1996, and M.S. and Ph.D. degrees in electrical engineering from Rensselaer Polytechnic Institute, Troy, NY, in 1999 and 2002, respectively. His research interests include information theory, wireless communication systems and networks, and image/video compression and communications. He is a member of IEEE and ACM. James W. Modestino (S′67- M′73- SM′81- F′87) was born in Boston, MA, on April 27, 1940. He received the B.S. degree from Northeastern University, Boston, MA, in 1962, and the M.S. degree from the University of Pennsylvania, Philadelphia, PA, in 1964, both in electrical engineering. He also received the M.A. and Ph.D. degrees from Princeton University, Princeton, NJ, in 1968 and 1969, respectively. He has held a number of industrial positions, including positions with RCA Communications Systems Division, Camden, NJ; General Electronic Laboratories, Cambridge, MA; AVCO Systems Division, Wilmington, MA; GTE Laboratories, Waltham, MA; and MIT Lincoln Laboratories, Lexington, MA. From 1970 to 1972, he was an Assistant Professor in the Department of Electrical Engineering, Northeastern University. In 1972, he joined Rensselaer Polytechnic Institute, Troy, NY, where until leaving in 2002 he was an Institute Professor in the Electrical, Computer and Systems Engineering Department and Director of the Center for Image Processing Research. He has been responsible for teaching and research in the communication, information and signal processing systems area. His specific research interests include communication in fading dispersive channels; detection, estimation and filtering in impulsive or burst noise environments; digital signal, image and video processing; and multimedia communication systems and networks. In 2002 he joined the Department of Electrical and Computer Engineering at the University of Miami, Coral Gables, FL, as the Victor E. Clarke Endowed Scholar, Professor and Chair. He has held visiting positions with the University of California at San Diego, LaJolla, CA (1981–1982); GE Research and Development Center, Schenectady, NY (1988–1989); and Massachusetts Institute of Technology, Cambridge, MA (1995–1996). Dr. Modestino is a past member of the Board of Governors of the IEEE Information Theory Group. He is a past Associate Editor and Book Review Editor for the IEEE TRANSACTIONS ON INFORMATION THEORY. In 1984, he was co-recipient of the Stephen O. Rice Prize Paper Award from the IEEE Communications Society and in 2000 he was co-recipient of the best paper award at the International Packet Video Conference.  相似文献   

8.
A forecast of the practical and promising devices, circuits, and systems that can be expected in the next one to five years is presented. It is based on a survey of a group of distinguished practitioners throughout the industry. The forecasts cover the areas of lasers and electrooptics, integrated optoelectronics, electron devices, digital integrated circuits, high-frequency and microwave devices, VLSI signal and image processing systems, analog ICs and signal processing, power electronics and systems, neural systems and applications, and medical image and signal processing. A particularly optimistic outlook is seen for lasers, fiber optics, optoelectronic ICs, and optical switching and processing. Digital ICs and power electronics are also expected to make steady gains. In addition, flat panel displays will attract a fair amount of activity, with the liquid-crystal and electroluminescent types emerging as the leaders in this decade. Looking further out, advances in artificial and biological neural systems represents a natural extension to more sophisticated problem-solving in speech processing, vision and communications  相似文献   

9.
The emerging monoelemental 2D materials named as Xenes including borophene, silicene, germanene, stanene, phosphorene, arsenene, antimonene, bisthumene, selenene, and tellurene, have attracted rising attention experimentally and theoretically. Because of their excellent and versatile physical, chemical, electrical, and optical advantages, Xenes have been shown or have been predicted to have excellent performance in nanotechnology applications, addressing challenges and advances in electronics, energy, healthcare, and environment. In this review, the basic fundamentals in the classification of the periodic table group and the synthesis methods for the emerging materials are summarized. Then, the hybridization, doping and functionalization of 2D Xenes, and their corresponding applications are presented. Furthermore, a summary of research progress on 2D Xenes and the challenges and perspectives for their further development are discussed.  相似文献   

10.
In order to support the diverse Quality of Service (QoS) requirements for differentiated data applications in broadband wireless networks, advanced techniques such as space-time coding (STC) and orthogonal frequency division multiplexing (OFDM) are implemented at the physical layer. However, the employment of such techniques evidently affects the subchannel-allocation algorithms at the medium access control (MAC) layer. In this paper, we propose the QoS-driven cross-layer subchannel-allocation algorithms for data transmissions over asynchronous uplink space-time OFDM-CDMA wireless networks. We mainly focus on QoS requirements of maximizing the best-effort throughput and proportional bandwidth fairness, while minimizing the upper-bound of scheduling delay. Our extensive simulations show that the proposed infrastructure and algorithms can achieve high bandwidth fairness and system throughput while reducing scheduling delay over wireless networks. Xi Zhang (S’89-SM’98) received the B.S. and M.S. degrees from Xidian University, Xi’an, China, the M.S. degree from Lehigh University, Bethlehem, PA, all in electrical engineering and computer science, and the Ph.D. degree in electrical engineering and computer science (Electrical Engineering—Systems) from The University of Michigan, Ann Arbor, USA. He is currently an Assistant Professor and the Founding Director of the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. He was an Assistant Professor and the Founding Director of the Division of Computer Systems Engineering, Department of Electrical Engineering and Computer Science, Beijing Information Technology Engineering Institute, Beijing, China, from 1984 to 1989. He was a Research Fellow with the School of Electrical Engineering, University of Technology, Sydney, Australia, and the Department of Electrical and Computer Engineering, James Cook University, Queensland, Australia, under a Fellowship from the Chinese National Commission of Education. He worked as a Summer Intern with the Networks and Distributed Systems Research Department, Bell Laboratories, Murray Hills, NJ, and with AT&T Laboratories Research, Florham Park, NJ, in 1997. He has published more than 80 technical papers. His current research interests focus on the areas of wireless networks and communications, mobile computing, cross-layer designs and optimizations for QoS guarantees over mobile wireless networks, wireless sensor and Ad Hoc networks, wireless and wireline network security, network protocols design and modeling for QoS guarantees over multicast (and unicast) wireless (and wireline) networks, statistical communications theory, random signal processing, and distributed computer-control systems. Dr. Zhang received the U.S. National Science Foundation CAREER Award in 2004 for his research in the areas of mobile wireless and multicast networking and systems. He is currently serving as an Editor for the IEEE Transactions on Wireless Communications, an Associated Editor for the IEEE Transactions on Vehicular Technology, and and Associated Editor for the IEEE Communications Letters, and is also currently serving as a Guest Editor for the IEEE Wireless Communications Magazine for the Special Issues of “Next Generation of CDMA vs. OFDMA for 4G Wireless Applications”. He has served or is serving as the Panelist on the U.S. National Science Foundation Research-Proposal Review Panel in 2004, the WiFi-Hotspots/WLAN and QoS Panelist at the IEEE QShine 2004, as the Symposium Chair for the IEEE International Cross-Layer Designs and Protocols Symposium within the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC) 2006, the Technical Program Committee Co-Chair for the IEEE IWCMC 2006, the Poster Chair for the IEEE QShine 2006, the Publicity Co-Chair for the IEEE WirelessCom 2005, and as the Technical Program Committee members for IEEE GLOBECOM, IEEE ICC, IEEE WCNC, IEEE VTC, IEEE QShine, IEEE WoWMoM, IEEE WirelessCom, and IEEE EIT. He is a Senior Member of the IEEE and a member of the Association for Computing Machinery (ACM). Jia Tang (S’03) received the B.S. degree in electrical engineering from Xi’an Jiaotong University, Xi’an, China, in 2001. He is currently a Research Assistant working towards the Ph.D. degree in the Networking and Information Systems Laboratory, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA. His research interests include mobile wireless communications and networks, with emphasis on cross-layer design and optimizations, wireless quality-of-service (QoS) provisioning for mobile multimedia networks, wireless diversity techniques, and wireless resource allocation. Mr. Tang received the Fouraker Graduate Research Fellowship Award from the Department of Electrical and Computer Engineering, Texas A&M University in 2005.  相似文献   

11.
单目图像序列光流三维重建技术研究综述   总被引:2,自引:0,他引:2       下载免费PDF全文
张聪炫  陈震  黎明 《电子学报》2016,44(12):3044-3052
由单目图像序列光流重建物体或场景的三维运动与结构是计算机视觉、图像处理与模式识别等领域的重要研究内容,在机器人视觉、无人机导航、车辆辅助驾驶以及医学影像分析等方面具有重要的应用。本文首先从精度与鲁棒性等方面对单目图像序列光流计算及三维重建技术近年来取得的进展进行综述与分析。然后采用Middlebury测试图像序列对HS、LDOF、CLG-TV、SOF、AOFSCNN 和 Classic +NL 等典型光流算法以及 Adiv、RMROF、Sekkati 和DMDPOF等基于光流的间接与直接重建方法进行实验对比分析,指出各对比方法的优点与不足,归纳各类方法的性能特点与适用范围。最后对利用分数阶微分模型、非局部约束、立体视觉以及深度线索解决亮度突变、非刚性运动、运动遮挡与模糊情况下光流计算及重建模型的局限性与鲁棒性问题进行总结与展望。  相似文献   

12.
As the convergence in digital industry takes shape, the digital networks, both wireline and wireless, are also converging to offer seamless services and enhanced experience to the user. With the arrival of the mobile Internet the mobility is also moving into new areas, e.g., imaging, games, video, multimedia, and across different types of networks. In this paper we explore why, what, and how of the network convergence, and identify how the industry viewpoints align and differ. We also identify the key barriers to achieving true network convergence. We then discuss the role of the Internet Protocol (IP) as the common thread that enables network convergence, and the key industry and standards initiatives to actually provide solutions and the equipment to implement a cost-efficient and high performance converged network. Sudhir Dixit joined Nokia Research Center in 1996, where he is currently a Research Fellow and works on next generation wireless networks. From 1996 to 2003 he was a Senior Research Manager, focusing on IP/ATM, wireless, content networks, and optical networks. Prior to that he worked at NYNEX Science & Technology (now Verizon), GTE (now Verizon), Codex Motorola, Wang, Harris, and STL (now Nortel Europe Labs). He has published or presented over 150 papers, published three books, and holds 14 patents. He is on the Editorial Board of the IEEE Communications Magazine, Springer's Wireless Personal Communications Journal, and KIC's Journal of Communications and Networks. He received a B.E. degree from MANIT, Bhopal, India, an M.E. degree from BITS, Pilani, India, a Ph.D. degree from the University of Strathclyde, Glasgow, Scotland, and an M.B.A. degree from Florida Institute of Technology, Melbourne. He is a Fellow of IEE (UK) and IETE (India). He represents Nokia on the Steering Board of the Wireless World Research Forum, and is also Chair of the SIG on Self-Organization of Wireless World Systems.  相似文献   

13.
The Internet of Things (IoT) is a system that includes smart items with different sensors, advanced technologies, analytics, cloud servers, and other wireless devices that integrate and work together to create an intelligent environment that benefits end users. With its wide spectrum of applications, IoT is revolutionizing both the current and future generations of the Internet. IoT systems can be employed for broad-ranging real applications, such as agriculture, the environment, cities, healthcare, and the industrial sector. In this paper, we briefly discuss the three-tier architectural view of IoT, its different communication technologies, and the smart sensors. Moreover, we study various application areas of IoT such as the environmental domain, healthcare, agriculture, smart cities, and industrial, commercial, and general aspects. A critical analysis is shown for the existing schemes and techniques related to this work. Further, this paper addresses the basic context, tools and evaluation approaches, future scope, and the advantages and disadvantages of the aforestated IoT applications. A comprehensive analysis is provided for each domain along with its fundamental parameters like the quality of service (QoS), network longevity, scalability, energy efficiency, accuracy, and cost. Finally, this study highlights the technical challenges and open research problems existing in different IoT applications.  相似文献   

14.
电磁超材料是由亚波长尺寸单元周期或非周期排列组成的人工结构,能对电磁波的频率、幅度、相位和极化等基本物理特征进行调控,突破了传统材料的限制,可实现很多自然界不存在的有趣物理现象及应用。过去二十余年,超材料因其强大的电磁调控能力一直是物理领域的研究热点。但无源超材料在电磁波调控中存在局限性,如工作频率固定、实现功能单一等...  相似文献   

15.
周阳  余博  宋芬芳 《移动信息》2023,45(12):69-71
随着科技的进步,大数据在交通领域中的应用日益广泛,如流量预测、拥堵管理、安全和智能系统等。然而,大数据的海量、高速、多样性和低价值密度也带来了一定的挑战,如数据存储、处理、整合、清洗、质量、准确性、安全性和隐私保护等。因此,数据治理显得尤为重要。数据治理是对数据的全面管理和运营,对于交通大数据环境而言,其重要性尤为突出。良好的数据治理策略可以提升数据管理成效,提高数据的质量和准确性,保障数据安全和隐私,增加数据的应用价值。文中提出了一套交通大数据的数据治理策略,包括数据质量管理、数据集成、数据安全和隐私保护、数据存储和处理、元数据管理等,以期实现更好的数据治理效果。  相似文献   

16.
The concern in mission-critical and safety-critical systems is that you develop them thoughtfully and carefully. They need traceable evidence for every detail. Like a good journalist, you and your team must establish the "who, what, when, where, why, and how" in everything you do. Development of mission- and safety-critical systems requires a temporal progression, regardless of the development model. Generally, there are five phases to development. These are: concept; planning and scheduling; design and development; controlled release; commercial release. Another issue in mission- and safety-critical system is people. People make processes work or not work. Good, disciplined people can struggle, even under wretched conditions, and produce good results. Add reasonable processes, and these same people can produce great results. Unfortunately, outstanding processes cannot rescue a project from unruly and undisciplined people.  相似文献   

17.
Wireless sensor networks are characterized by multihop wireless lossy links and resource constrained nodes. Energy efficiency is a major concern in such networks. In this paper, we study Geographic Routing with Environmental Energy Supply (GREES) and propose two protocols, GREES-L and GREES-M, which combine geographic routing and energy efficient routing techniques and take into account the realistic lossy wireless channel condition and the renewal capability of environmental energy supply when making routing decisions. Simulation results show that GREESs are more energy efficient than the corresponding residual energy based protocols and geographic routing protocols without energy awareness. GREESs can maintain higher mean residual energy on nodes, and achieve better load balancing in terms of having smaller standard deviation of residual energy on nodes. Both GREES-L and GREES-M exhibit graceful degradation on end-to-end delay, but do not compromise the end-to-end throughput performance. Kai Zeng received his B.E. degree in Communication Engineering and M.E. degree in Communication and Information System both from Huazhong University of Science and Technology, China, in 2001 and 2004, respectively. He is currently a Ph.D. student in the Electrical and Computer Engineering department at Worcester Polytechnic Institute. His research interests are in the areas of wireless ad hoc and sensor networks with emphases on energy-efficient protocol, cross-layer design, routing, and network security. Kui Ren received his B. Eng. and M. Eng. both from Zhejiang University, China, in 1998 and 2001, respectively. He worked as a research assistant at Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences from March 2001 to January 2003, at Institute for Infocomm Research, Singapore from January 2003 to August 2003, and at Information and Communications University, South Korea from September 2003 to June 2004. Currently he is a PhD candidate in the ECE department at Worcester Polytechnic Institute. His research interests include ad hoc/sensor network security, wireless mesh network security, Internet security, and security and privacy in ubiquitous computing environments. Wenjing Lou is an assistant professor in the Electrical and Computer Engineering department at Worcester Polytechnic Institute. She obtained her Ph.D. degree in Electrical and Computer Engineering from University of Florida in 2003. She received the M.A.Sc. degree from Nanyang Technological University, Singapore, in 1998, the M.E. degree and the B.E. degree in Computer Science and Engineering from Xi’an Jiaotong University, China, in 1996 and 1993 respectively. From December 1997 to July 1999, she worked as a Research Engineer in Network Technology Research Center, Nanyang Technological University. Her current research interests are in the areas of ad hoc and sensor networks, with emphases on network and system security and routing. Patrick J. Moran received his MSEE from Carnegie Mellon University, 1993. He is currently the CTO and Founder of AirSprite Technologies Inc, and is driving the company to utilize advanced networking protocols for low-power wireless network systems. His interests include architecture, protocols and high performance implementation of emerging communication technologies. Patrick has been involved in deployment of communication and signal processing technologies since graduating from the University of Minn. in 1986. He holds several patents and publications relating to storage, medical and data processing information systems. He is a member of the IEEE.  相似文献   

18.
龚强 《信息技术》2021,(1):12-17,22
海洋测绘是海洋空间地理信息测量与表达的总称.目前,我国海洋测绘市场逐渐形成,迫切需要高质量的海洋测绘技术提供服务.海洋测绘产业大致分为海洋基础测绘、海洋资源开发、海洋科学研究与管理、海岸带生态修复与海洋环境保护、海上交通运输等.海洋测绘技术包括海洋大地测量、海洋导航定位技术、水深测量、海岸带地形测量、海洋遥感、海底底质...  相似文献   

19.
Bang-bang phase detector based PLLs are simple to design, suffer no systematic phase error, and can run at the highest speed a process can make a working flip-flop. For these reasons designers are employing them in the design of very high speed Clock Data Recovery (CDR) architectures. The major drawback of this class of PLL is the inherent jitter due to quantized phase and frequency corrections. Reducing loop gain can proportionally improve jitter performance, but also reduces locking time and pull-in range. This paper presents a novel PLL design that dynamically scales its gain in order to achieve fast lock times while improving jitter performance in lock. Under certain circumstances the design also demonstrates improved capture range. This paper also analyses the behaviour of a bang-bang type PLL when far from lock, and demonstrates that the pull-in range is proportional to the square root of the PLL loop gain. Michael Chan received his bachelor degrees in Electrical Engineering and Computer Science from the University of Queensland in 2003. He is currently working towards his PhD at the same institution. His research interests include the design of high-speed clock and data recovery systems, and high speed phase locked loops. Adam Postula received the M.S. degree in electrical engineering from the Warsaw University of Technology, Poland, in 1974 and the Ph.D. degree in signal processing from the Poznan University of Technology, Poland, in 1981. He was an Electronic System Designer with ABB Sweden and a Researcher with the Royal Institute of Technology, Stockholm, Sweden, from 1983 to 1992. He led the development of high-level synthesis tools at the Swedish Institute of Microelectronics and was engaged in VHDL standardization in Europe. Since 1995, he has been a Senior Lecturer in the Department of Computer Science and Electrical Engineering, University of Queensland, Brisbane, Australia. His research interests include digital system design methodology, synthesis of digital systems, specialized processor architectures, and VLSI signal processing. Ding Yong received his PhD from University of London in electrical engineering in 1991. He was with National University of Singapore as a research scientist working in industrial research projects on data channel and servo-system for CD technology. In 1995, he joined VLSI design group of Western Digital as a principle engineer, where he was engaged in the IC design of Hard Disk Controller and CD-ROM Decoder and Controller. From 2000, he has been leading a mixed-signal design group as design manager and chief architect with Nano Silicon responsible for development of high-speed serial data transmission IPs. Lech Jóźwiak is an Associate Professor, Head of the Section of Digital Circuits and Formal Methods, at the Faculty of Electrical Engineering, Eindhoven University of Technology, The Netherlands. He received his M.Sc. and Ph.D. degrees in Electronics from the Warsaw University of Technology, Warsaw, Poland, in 1976 and 1982, respectively. From 1979 to 1986, he was a chief of two R&D teams in the Research Institute of Computers in Warsaw, and consultant to the United Nations Industrial Development Organization and industry. From 1986, he works mainly in the Netherlands, but also from time to time in USA, Canada, Australia, Belgium and Poland, combining advanced theoretical research with professional engineering practice and collaborating with industry, academia and governments. He is an author of a new information-driven approach to digital circuit synthesis, and new theories and methodologies of information relationships and measures, general decomposition and quality-driven design that have a considerable practical importance. He is also a creator of a number of practical products in the fields of application-specific (embedded) systems and EDA tools. His research interests include system, circuit, information and design theories and technologies, decision and optimization methodology, artificial intelligence, circuit and system design and EDA, re-configurable and massively parallel high-performance systems, embedded systems, and system dependability, analysis and validation. He is an author of more than 130 journal and conference papers and of some book chapters. He is a Director of EUROMICRO, co-founder and Steering Committee Chair of the EUROMICRO Symposium on Digital System Design, VIP in the IEEE International Symposium on Quality Electronic Design, program committee member of many other conferences, member of IEEE, EDAA, and of the Advisory Committee of the IEE Professional Network Embedded and Real-Time System Engineering. He is an advisor to the industry, Ministry of Economy and Commission of the European Communities in the fields of microelectronics, information technology, technology development and transfer, and SMEs.  相似文献   

20.
Although early reports about electricity and magnetism date back before Christ, it took another 2000 years until in the eighteenth century, men like B. Franklin, A. Volta, C. Coulomb, L. Galvani, and many others studied more intensely electrostatic and magnetostatic effects. In contrast to mechanics, hydrodynamics, and astronomy, which belonged to the mathematics discipline, electricity and magnetism were usually investigated by physicians, pharmacists, priests, philosophers, chemists, and fascinated amateurs. However, at the end of the eighteenth century and the beginning of the nineteenth century, researchers with mathematical backgrounds took over in France and later in Great Britain and Germany. Because of the many schools of thought and parallel developments in the nineteenth century, the authors first briefly mention the many evolutionary achievements made outside Germany before considering German contributions for the late eighteenth century to the early twentieth century  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号