首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characterization of dissolved organic matter (DOM) in drinking water sources is important as this material contributes to the formation of disinfection by-products (DBPs) and affects how water treatment unit operations are optimized. Drinking water utilities often draw water from sources impacted by multiple tributaries, with possible shifts in DOM concentrations and reactivity over time, depending on specific environmental conditions. In this study, results are presented on the characterization of DOM under varying ambient conditions from the four main tributaries of Lake Mead, a large reservoir in the southwest United States. The tributaries include the Las Vegas Wash (LVW), Muddy River (MR), Virgin River (VR) and the upper Colorado River (UCR). One additional sample was collected at the outflow of the reservoir (lower Colorado River (LCR)). The DOM was characterized by both bulk parameters (specific ultraviolet absorbance (SUVA)) and specific physicochemical properties, i.e. size, polarity and fluorescence. The analyses were performed emphasizing limited changes in its natural configuration by eliminating analytical preparation steps, excluding sample filtration (0.45 microm filter). Results indicate that each tributary had a different molecular weight distribution, as well as fluorescence properties, which helped in the identification of the relative source of DOM (allochthonous versus autochthonous). The largest apparent molecular weight distribution was observed for DOM samples collected at the MR site, which is fed mostly by groundwater seepage. The smallest apparent molecular weight was observed for DOM collected at the LCR site, suggesting that retention in the reservoir resulted in a decrease in molecular weight as a probable result of photo oxidation and microbial processes. Fluorescence analysis aided the differentiation of DOM by clearly identifying waters that were affected by microbial activity (LVW, UCR, and LCR), either by wastewater influence or by autochthonous processes, versus limited microbial influence (MR and VR). Polarity analysis revealed clear differences in the hydrophobic/hydrophilic nature between waters, including temporal differences within individual waters at a particular site. The DOM from the LVW and VR sites had higher hydrophobic character, as measured by retention onto non-polar sorbents. Additionally, the DOM collected at the LCR had the least hydrophobic character. This type of analysis would be beneficial to utilities who want to better understand and manage their source waters, especially in the evaluation of temporal variation within a watershed.  相似文献   

2.
Thacker SA  Tipping E  Baker A  Gondar D 《Water research》2005,39(18):4559-4573
A series of 11 standardised, reproducible, assays have been developed of physico-chemical functions of dissolved organic matter (DOM) in freshwaters. The assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo(a)pyrene binding, hydrophilicity and adsorption to alumina. To obtain DOM for the assays, a 45 L sample of filtered freshwater was rotary-evaporated to reduce the volume to ca. 500 cm3. The concentrate was then passed through a strong cation exchanger, in the Na+ form, to remove alkaline-earth cations, and then through 0.7 and 0.2 microm filters. Eight samples, two each from a lake and three streamwaters, were processed. The yields of dissolved organic carbon (DOC) ranged from 70% to 107% (average 91%). The samples of DOM, stored in the dark at 4 degrees C, retained their functional assay characteristics for up to 7 months. When assaying the concentrates, parallel assays were performed with Suwannee River fulvic acid (SRFA), as a quality control standard. For most of the assays, the results for eight freshwater DOM samples are similar to those obtained with SRFA, the chief exception being the greater hydrophilicity of the DOM samples. For eight of the assays, variability among the DOM samples is significantly (p < 0.01) greater than can be explained by analytical error, i.e. by comparison with results for the SRFA quality standard; the three exceptional assays are photochemical fading, copper binding and benzo(a)pyrene binding. The two lakewater samples studied gave the most extreme assay results, probably because of the influence of phytoplankton-derived DOM. Significant correlations of hydrophilicity and adsorption with optical absorbance may mean that some DOM functional properties can be predicted from comparatively simple measurements.  相似文献   

3.
Cyanobacterial blooms represent a significant ecological and human health problem worldwide. In aquatic environments, cyanobacterial blooms are actually surrounded by dissolved organic matter (DOM) and attached organic matter (AOM) that bind with algal cells. In this study, DOM and AOM fractionated from blooming cyanobacteria in a eutrophic freshwater lake (Lake Taihu, China) were irradiated with a polychromatic UV lamp, and the photochemical heterogeneity was investigated using fluorescence excitation–emission matrix (EEM)-parallel factor (PARAFAC) analysis and synchronous fluorescence (SF)-two dimensional correlation spectroscopy (2DCOS). It was shown that a 6-day UV irradiation caused more pronounced mineralization for DOM than AOM (59.7% vs. 41.9%). The EEM-PARAFAC analysis identified one tyrosine-, one humic-, and two tryptophan-like components in both DOM and AOM, and high component photodegradation rates were observed for DOM versus AOM (k > 0.554 vs. <0.519). Moreover, SF-2DCOS found that the photodegradation of organic matters followed the sequence of tyrosine-like > humic-like > tryptophan-like substances. Humic-like substances promoted the indirect photochemical reactions, and were responsible for the higher photochemical rate for DOM. The lower photodegradation of AOM benefited the integrality of cells in cyanobacterial blooms against the negative impact of UV irradiation. Therefore, the photochemical behavior of organic matter was related to the adaptation of enhanced-duration cyanobacterial blooms in aquatic environments.  相似文献   

4.
Ultrafiltration (UF) fouling has been attributed to concentration polarization, gel layer formation as well as outer and inner membrane pore clogging. It is believed that mass of humic materials either retained on membrane surface or associated with membrane inner pore surface is the primary cause for permeate flux decline and filtration resistance build-up in water supply industries. While biofilm/biofouling and inorganic matter could also be contributing factors for permeability decline in wastewater treatment practices. The present study relates UF fouling to mass of dissolved organic matter (DOM) retained on membrane and quantifies the effect of retained DOM mass on filtration flux decline. The results demonstrate that larger pore membranes exhibit significant flux decline in comparison with the smaller ones. During a 24-h period, dissolved organic carbon mass retained in 10 kDa membranes was about 1.0 g m−2 and that in 100 kDa membranes was more than 3 times higher (3.6 g m−2). The accumulation of retained DOM mass significantly affects permeate flux. It is highly likely that some DOMs bind or aggregate together to form surface gel layer in the smaller 10 kDa UF system; those DOMs largely present in inner pore and serving as pore blockage on a loose membrane (100 kDa) are responsible for severe flux decline.  相似文献   

5.
Caupos E  Mazellier P  Croue JP 《Water research》2011,45(11):3341-3350
In the present work the degradation of estrone (E1) a natural estrogenic hormone has been studied under simulated solar irradiation. The photodegradation of E1 has been investigated in the absence and in the presence of 7.7-8.9 mg L−1 of dissolved organic carbon (DOC), under solar light simulation with irradiance approximating that of the sun. DOC extracts from different origins have been used. Half-lives ranging between 3.9 h and 7.9 h were observed. Results indicated that E1 was photodegraded even in the absence of DOC. The presence of DOC was found to enhance the degradation of E1. Experiments performed with the addition of reactive species scavengers (azide ions and 2-propanol) have shown that these two species play a significant role in the photodegradation. Some experiments have been performed with a DOC previously submitted to solar irradiation. Changes in optical and physico-chemical properties of DOC strongly affect its photoinductive properties, and hence its efficiency on E1 degradation. A part of the study consisted in the investigation of photoproducts structures. Five photoproducts were shown by chromatographic analysis: one arising from direct photolysis and the four others from DOC photoinduced degradation.  相似文献   

6.
Diuron is frequently detected in some drinking water reservoirs under the Burgundy vineyards, where organic amendments are applied. The environmental effect of these amendments on pesticide transport is ambiguous: on the one hand it could enhance their retention by increasing soil organic carbon content; on the other hand, dissolved organic matter (DOM) could facilitate their transport. Elutions were performed using columns packed with glass beads in order to investigate DOM-diuron interactions, and the possible co-transport of diuron and DOM. Four organic amendments (A, B, C and D) were tested; C and D were sampled at fresh (F) and mature (M) stages. An increase in diuron leaching was observed only for A and DF amendments (up to 16% compared to the DOM-free blank samples), suggesting a DOM effect on diuron transport. These results could be explained by the higher DOM leaching for A and DF compared to B, CF, CM and DM increasing diuron-DOM interactions. These interactions seem to be related to the aromatic and aliphatic content of the DOM, determining formation of hydrogen and non-covalent bonds. The degree of organic matter maturity does not seem to have any effect with amendment C, while a reduction in diuron leaching is observed between DF and DM. After equilibrium dialysis measurement of diuron-DOM complexes, it appeared that less than 3% of the diuron applied corresponded to complexes with a molecular weight > 1000 Da. Complexes < 1000 Da could also take part in this facilitated transport.  相似文献   

7.
Adsorption of dissolved natural organic matter (DOM) by virgin and modified granular activated carbons (GACs) was studied. DOM samples were obtained from two water treatment plants before (i.e., raw water) and after coagulation/flocculation/sedimentation processes (i.e., treated water). A granular activated carbon (GAC) was modified by high temperature helium or ammonia treatment, or iron impregnation followed by high temperature ammonia treatment. Two activated carbon fibers (ACFs) were also used, with no modification, to examine the effect of carbon porosity on DOM adsorption. Size exclusion chromatography (SEC) and specific ultraviolet absorbance (SUVA(254)) were employed to characterize the DOMs before and after adsorption. Iron-impregnated (HDFe) and ammonia-treated (HDN) activated carbons showed significantly higher DOM uptakes than the virgin GAC. The enhanced DOM uptake by HDFe was due to the presence of iron species on the carbon surface. The higher uptake of HDN was attributed to the enlarged carbon pores and basic surface created during ammonia treatment. The SEC and SUVA(254) results showed no specific selectivity in the removal of different DOM components as a result of carbon modification. The removal of DOM from both raw and treated waters was negligible by ACF10, having 96% of its surface area in pores smaller than 1 nm. Small molecular weight (MW) DOM components were preferentially removed by ACF20H, having 33% of its surface area in 1--3 nm pores. DOM components with MWs larger than 1600, 2000, and 2700 Da of Charleston raw, Charleston-treated, and Spartanburg-treated waters, respectively, were excluded from the pores of ACF20H. In contrast to carbon fibers, DOM components from entire MW range were removed from waters by virgin and modified GACs.  相似文献   

8.
Thermal fluorescence quenching properties of dissolved organic matter   总被引:5,自引:0,他引:5  
Baker A 《Water research》2005,39(18):4405-4412
The fluorescence excitation-emission matrices of dissolved organic matter (DOM) are investigated between 10 and 45 degrees C for river and waste waters and organic matter standards. With increased temperature, fluorescence intensity is quenched. It is demonstrated that for a range of river and wastewater samples, that tryptophan-like fluorescence exhibits a greater range of quenching (between 20+/-4% and 35+/-5%) than fulvic-like fluorescence (19+/-4 to 26+/-3%) over this temperature range. Humic substance standards exhibit similar fulvic-like (23+/-4%) fluorescence thermal quenching properties to river water samples (23+/-3%); however none of the samples exhibit quenching of tryptophan-like fluorescence to the same extent as the tryptophan standards (approximately 50%). Thermal fluorescence quenching is related to the exposure of the fluorophores to the heat source; our findings suggest that the tryptophan-like groups within DOM is more exposed in untreated wastewaters than in treated wastewaters riverine DOM. Thermal fluorescence properties have the potential to be used to source DOM, to provide additional chemical structural information, to temperature correct laser-induced remotely sensed DOM fluorescence, and to characterise DOM through the wastewater treatment process.  相似文献   

9.
The influence of dissolved organic matter (DOM) on the sorption of four phenols, 2,4,6-trichlorophenol (2,4,6-TCP), pentachlorophenol (PCP), 2,4-dinitrophenol (2,4-DNP) and 2-methyl-4,6-dinitrophenol (2-M-4,6-DNP), onto sandy aquifer material at different pH values was investigated using flow through column experiments. The pH-dependent sorption of the chlorinated phenols 2,4,6-TCP and PCP was not significantly affected by DOM (measured as dissolved organic carbon, DOC), whereas in the case of nitrophenols a significant lower retardation was found, depending on the DOC concentration and pH value of the aqueous solution. Sorption decreases with increasing DOC concentration, which indicates a binding of these compounds by DOM. The degree of sorption reduction depends on the pH value and increases with increasing fraction of neutral species. The different behaviour of nitrophenols in comparison to the chlorophenols is assumed to be a result of specific charge-transfer interactions. A combined sorption and complex formation model was used to describe the effect of pH and DOC concentration on the sorption of nitrophenols onto aquifer material and to estimate binding coefficients of neutral nitrophenols on DOM.  相似文献   

10.
Nanomolar concentrations of steroid hormones such as 17β-estradiol can influence the reproductive development and sex ratios of invertebrate and vertebrate populations. Thus their release into surface and ground waters from wastewater facilities and agricultural applications of animal waste is of environmental concern. Many of these compounds are chromophoric and susceptible to photolytic degradation. High intensity UV-C radiation has been demonstrated to degrade some of these compounds in engineered systems. However, the degradation efficacy of natural solar radiation in shallow fresh waters is less understood. Here photolytic experiments with 17β-estradiol demonstrated modest photodegradation (~ 26%) when exposed to simulated sunlight between 290 and 720 nm. Photodegradation significantly increased (~ 40-50%) in the presence of 2.0-15.0 mg/l of dissolved organic carbon (DOC) derived from humic acids of the Suwannee River, GA. However, rates of photodegradation reached a threshold at approximately 5.0 mg/l DOC. Observed suppression of photolysis in the presence of a radical inhibitor (i.e. 2-propanol) indicated that a significant proportion of the degradation was due to radicals formed from the photolysis of DOC. Although photodegradation was greatest in full sunlight containing UV-B (290-320 nm), degradation was also detected with UV-A (320-400 nm) and visible light (400-720 nm) alone.  相似文献   

11.
Dilling J  Kaiser K 《Water research》2002,36(20):5037-5044
In this study, we tested a simple and rapid method for the estimation of carbon in the hydrophobic fraction of dissolved organic matter (DOM) of different origin (spruce, pine, and beech litter) in soil water. The method is based on the fact that the hydrophobic fraction of DOM contains almost entirely the aromatic moieties of DOM. Thus, it showed a clearly distinct light absorption at 260 nm compared to the hydrophilic fraction. This light absorption was directly proportional to the concentration of the hydrophobic fraction. Moreover, it was independent of the concentration of the hydrophilic fraction. We compared the concentrations of hydrophobic DOM estimated by the UV method with those of the conventional fractionation using chromatographic columns of XAD-8 macroporous resin and found an excellent agreement between the two methods for both solutions from laboratory sorption experiments and field samples of forest floor leachates and subsoil porewaters. In addition, the absorption at 260 nm of hydrophobic DOM proved to be independent of pH values ranging from 2.0 to 6.5. Compared to the conventional chromatographic fractionation, the method using the UV absorption at 260 nm is less time consuming, needs a much smaller sample volume, and showed a better reproducibility. However, its use is restricted to water samples of low nitrate (<25 mg L−1) and Fe (<5 mg L−1) concentrations and, probably, with the hydrophobic fraction dominated by aromatic compounds deriving from degradation of lignin.  相似文献   

12.
Wang J  Huang CP  Allen HE 《Water research》2003,37(20):4835-4842
The uptake of the seven heavy metal ions Cd(II), Co(II), Cr(III), Cu(II), Ni(II), Pb(II), and Zn(II) by sludge particulates in single-metal systems was investigated. Results showed that under acidic and neutral pH conditions, the uptake of all heavy metals by sludge particulates increases with the increase of pH. However, in the alkaline pH region, the uptake of Cu(II), Ni(II), and Co(II) decreases with the increase of pH, primarily due to the high dissolved organic matter (DOM) concentration in high pH conditions. Based on chemical reactions among heavy metal, sludge solids, and DOM, a mathematical model describing metal uptake as functions of DOM and pH was developed. The stability constants of metal–sludge and metal–DOM complexes can be determined using this model in conjunction with experimental metal uptake data. Results showed that, for the secondary sludge sample collected from Baltimore Back River Wastewater Treatment plant on March 1997, the stability constants of Cu(II)–sludge complex (log KS) and Cu(II)–DOM complex (log KL) are 5.3±0.2 and 4.7±0.3, respectively; for Ni(II), they are 4.0±0.2 and 3.9±0.2, respectively. Results also showed that under neutral and low pH conditions (pH<8), the DOM effects on metal uptake for all heavy metals are insignificant. Therefore, the DOM term in the model can be ignored. Results showed that, for the secondary sludge sample collected from Baltimore Back River Wastewater Treatment plant on December 1996, the estimated log KS values of metal–sludge complexes for Cd(II), Co(II), Cr(III), Cu(II), Ni(II), Pb(II), and Zn(II) are, respectively, 3.6±0.2, 3.0±0.1, 5.5±0.1, 4.8±0.1, 3.1±0.1, 5.1±0.1, and 4.4±0.3.  相似文献   

13.
The interaction of organic micropollutants with dissolved organic carbon (DOC) can influence their transport, degradation and bioavailability. While this has been well established for natural organic carbon, very little is known regarding the influence of DOC on the fate of micropollutants during wastewater treatment and water recycling. Dissolved organic carbon-water partition coefficients (KDOC) for wastewater derived and reference DOC were measured for a range of micropollutants using a depletion method with polydimethylsiloxane disks. For micropollutants with an octanol-water partition coefficient (log KOW) greater than 4 there was a significant difference in KDOC between reference and wastewater derived DOC, with partitioning to wastewater derived DOC over 1000 times lower for the most hydrophobic micropollutants. The interaction of nonylphenol with wastewater derived DOC from different stages of a wastewater and advanced water treatment train was studied, but little difference in KDOC was observed. Organic carbon characterisation revealed that reference and wastewater derived DOC had very different properties due to their different origins. Consequently, the reduced sorption capacity of wastewater derived DOC may be related to their microbial origin which led to reduced aromaticity and lower molecular weight. This study suggests that for hydrophobic micropollutants (log KOW > 4) a higher concentration of freely dissolved and thus bioavailable micropollutants is expected in the presence of wastewater derived DOC than predicted using KDOC values quantified using reference DOC. The implication is that naturally derived DOC may not be an appropriate surrogate for wastewater derived DOC as a matrix for assessing the fate of micropollutants in engineered systems.  相似文献   

14.
Concentrations and fluxes of dissolved organic carbon in UK topsoils   总被引:1,自引:0,他引:1  
Dissolved organic carbon (DOC) concentrations in soil water samples collected from depths of 5 to 20 cm at 10 moorland and 11 forest sites during the period 2000-2006 were obtained from new measurements and from the monitoring programmes of the UK Environmental Change Network and the International Cooperative Programme (ICP) on Forests. Data on soil properties and vegetation type were also assembled. Considering data from Prenart tension collectors, which were used at nearly all the sites, mean annual concentrations ranged from 1.3 to 97.5 g m(-3) with means of 19.5 (standard deviation 15.2) and 27.6 (SD 23.3) g m(-3) for moorland and forest sites respectively. Interannual mean DOC concentration at an individual site varied by only 1.5-fold, averaged over all sites with at least three years' data. Concentrations during summer months (April to September) were on average 17% greater than those in winter (October to March). If data from two sites (the single peatland and an unusual forest site) were ignored, DOC concentrations were strongly inversely related to water flux, estimated from rainfall and evaporation data. Fluxes of DOC, calculated by combining concentration with water flux, ranged from 2.2 to 71.9 gC m(-2) yr(-1) over all sites and years, with overall means of 19.2 (SD 13.6) and 12.2 (SD 13.9) gC m(-2) yr(-1) for the moorland and forest sites respectively. However, if the two exceptional sites were omitted, the overall mean was 9.1 gC m(-)(2) yr(-1) with a standard deviation of only 4.9 gC m(-2) yr(-1). Annual DOC flux was strongly dependent upon annual water flux, varying by 3.5-fold between years when averaged over all sites. On average, 75.5% of the DOC was exported during the winter period (October to March).  相似文献   

15.
Water samples were collected from 20 wetland, river and lake sites across Eastern Ontario and Western Quebec to investigate the distribution of methylmercury (MeHg) associated with various size fractions of dissolved organic matter (DOM). Tangential Flow UltraFiltration (TUF) was used to fractionate DOM by nominal molecular size (<0.2 μm, <300 kDa, <30 kDa, <5 kDa and <1 kDa). DOM fluorescence (DOM FL) and absorbance (DOC Abs) were used to quantify DOM photoreactivity and aromaticity in each sample. Significant differences in the size-associated distribution of MeHg, Dissolved Organic Carbon (DOC), DOM FL, and DOM Abs were observed between wetlands, rivers, and lakes. The low molecular weight (LMW) fraction (<5 kDa) in wetlands contained the majority of MeHg (70.0 ± 13.8%), DOC (56.1 ± 9.4%), and DOM FL (77.4 ± 7.5%). DOM FL was also high in the LMW fraction for rivers (60.6 ± 25%) and lakes (75.2 ± 16.9%). Mean MeHg concentrations in the LMW fraction of lakes (41 ± 26 pg L− 1) and rivers (32 ± 19 pg L− 1) were substantial but much lower than wetlands. Rivers had the highest percentage of methylmercury (38.0 ± 23.5%) in the particulate (>0.2 µm) fraction. This research highlights the importance of low molecular weight dissolved organic matter in methylmercury fate. For example, a large proportion of MeHg was found in the LMW weight fractions (mean = 47.3 ± 25.4%) of the wetlands, rivers, and lakes in this study.  相似文献   

16.
Three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy was employed to characterize dissolved organic matter (DOM) in a submerged membrane bioreactor (MBR). Three fluorescence peaks could be identified from the EEM fluorescence spectra of the DOM samples in the MBR. Two peaks were associated with the protein-like fluorophores, and the third was related to the visible humic acid-like fluorophores. Only two main peaks were observed in the EEM fluorescence spectra of the extracellular polymeric substance (EPS) samples, which were due to the fluorescence of protein-like and humic acid-like matters, respectively. However, the EEM fluorescence spectra of membrane foulants were observed to have three peaks. It was also found that the dominant fluorescence substances in membrane foulants were protein-like substances, which might be due to the retention of proteins in the DOM and/or EPS in the MBR by the fine pores of the membrane. Quantitative analysis of the fluorescence spectra including peak locations, fluorescence intensity, and different peak intensity ratios and the fluorescence regional integration (FRI) analysis were also carried out in order to better understand the similarities and differences among the EEM spectra of the DOM, EPS, and membrane foulant samples and to further provide an insight into membrane fouling caused by the fluorescence substances in the DOM in submerged MBRs.  相似文献   

17.
A number of water treatment works (WTW) in the north of England (UK) have experienced problems in reducing the dissolved organic carbon (DOC) present in the water to a sufficiently low level. The problems are experienced in autumn/winter when the colour increases and the coagulant dose at the WTW needs to be increased in order to achieve sufficient colour removal. However, the DOC content of the water varies little throughout the year. To investigate this further, the water was fractionated using resin adsorption techniques into its hydrophobic (fulvic and humic acid fractions) and hydrophilic (acid and non-acid fractions) components. The fractionation process yields useful information on the changing concentration of each fraction but is time consuming and labour intensive. Here, a method of rapidly determining fraction concentration was developed using fluorescence spectroscopy. The model created used synchronous spectra of fractionated material compared against bulk water spectra and predicted the fraction concentrations to within 10% for a specific water. The model was unable to predict fraction concentrations for waters from a different watershed.  相似文献   

18.
Pisani O  Yamashita Y  Jaffé R 《Water research》2011,45(13):3836-3844
This study shows that light exposure of flocculent material (floc) from the Florida Coastal Everglades (FCE) results in significant dissolved organic matter (DOM) generation through photo-dissolution processes. Floc was collected at two sites along the Shark River Slough (SRS) and irradiated with artificial sunlight. The DOM generated was characterized using elemental analysis and excitation emission matrix fluorescence coupled with parallel factor analysis. To investigate the seasonal variations of DOM photo-generation from floc, this experiment was performed in typical dry (April) and wet (October) seasons for the FCE. Our results show that the dissolved organic carbon (DOC) for samples incubated under dark conditions displayed a relatively small increase, suggesting that microbial processes and/or leaching might be minor processes in comparison to photo-dissolution for the generation of DOM from floc. On the other hand, DOC increased substantially (as much as 259 mgC gC−1) for samples exposed to artificial sunlight, indicating the release of DOM through photo-induced alterations of floc. The fluorescence intensity of both humic-like and protein-like components also increased with light exposure. Terrestrial humic-like components were found to be the main contributors (up to 70%) to the chromophoric DOM (CDOM) pool, while protein-like components comprised a relatively small percentage (up to 16%) of the total CDOM. Simultaneously to the generation of DOC, both total dissolved nitrogen and soluble reactive phosphorus also increased substantially during the photo-incubation period. Thus, the photo-dissolution of floc can be an important source of DOM to the FCE environment, with the potential to influence nutrient dynamics in this system.  相似文献   

19.
In this study, batch and column adsorption experiments with granular activated carbon (GAC) were carried out for removing dissolved organic matter (DOM) of a pond water at different water temperatures (5, 20, and 35 °C). The water was characterized before and after the adsorption step using UV/VIS spectroscopy and size-exclusion chromatography (SEC) combined with diode array detection (DAD). DOM breakthrough of GAC filters has been found to be slower at higher water temperatures, the DOM removal being most effective at 35 °C. UV/VIS spectra and SEC chromatograms of water samples treated at different water temperatures indicate that an increase in temperature especially supports the adsorption of small DOM molecules as well as molecules absorbing at higher wavelengths, specifying aromatic structures of DOM. SEC-DAD has been demonstrated to be an efficient method for characterizing DOM of natural waters and for detecting relative changes of DOM during the water treatment process.  相似文献   

20.
Lu Y  Allen HE 《Water research》2002,36(20):5083-5101
We investigated Cu complexation by three dissolved organic matters (DOMs) collected by reverse osmosis (RO). Alkalimetric titration, pH-stat Cu and Ca titrations, pH edges of Cu–DOM complexation, and Ca/Mg–Cu exchange experiments were investigated at I=10−2 M for DOM samples of 10 mg C/L. The proton and Cu binding characteristics indicated similarity for all three DOMs. All Cu titrations employed ion selective electrode measurement and indicated the presence of relatively small amounts of strong Cu-binding sites. Four distinct classes of Cu binding sites are required for FITEQL 4.0 to provide good fits to the entire curves. The estimated total Cu binding site density is 4.55 mmol/g C, much less than the total acidity but very close to the phenolic site content. Cu–DOM complexation increases approximately 10-fold per pH unit, even at relatively high pH (>8). We suggest that sites characterized as phenolic based on alkalimetric titration, not carboxyl sites, account for the majority of Cu complexation under natural water conditions, and Cu–DOM complexation is principally through the replacement of H+ by Cu2+ at the phenolic binding sites. The Cu–H exchange ratio is 1:1 for the first three sites and about 1:2 for the 4th site. This 4-site model describes well the pH dependency of Cu–DOM complexation and provides good estimates of free Cu concentrations throughout wide total copper (CuT) and pH ranges. Comparison between Ca–DOM and Cu–DOM complexation demonstrated that (i) Ca–DOM complexation increases much less than an order of magnitude per pH unit and decreases at higher Ca concentration, different from that of Cu–DOM complexation; and (ii) Cu–DOM complexation is highly non-linear, in contrast to the much reduced extent of non-linearity of Ca–DOM complexation. Ca/Mg–Cu exchange experiments showed small competition effect, less than expected by a simple competition model, and the competition tended to reduce with increasing Ca or Mg concentrations. The extent of the competition by Mg and Ca are essentially comparable. Put all together, it suggests that Ca and Mg are preferably bound by carboxyl sites, especially at relatively high concentrations, resulting in a weakened apparent competition effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号