首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to estimate the mass concentrations of benzene (B), toluene (T), ethylbenzene (E) and xylenes (X) inside air environment of buses and to analyze the influencing factors of the BTEX pollution levels, 22 public buses were investigated in Changsha, China. The interior air was collected through activated charcoal adsorption tubes and then the air samples were analyzed with thermally desorbed gas chromatograph. The mass concentrations ranged from 21.3 to 106.4 μg/m3 for benzene, from 53.5 to 266.0 μg/m3 for toluene, from 19.6 to 95.9 μg/m3 for ethylbenzene and from 46.9 to 234.8 μg/m3 for xylenes. Their mean values were 68.7, 179.7, 62.5 and 151.8 μg/m3, respectively. The rates of buses tested where the interior concentrations exceeded the limit levels of Chinese Indoor Air Quality Standard were 45.5% for toluene and 13.6% for xylenes. The BTEX levels increased when in-car temperature or relative humidity rose, and decreased when car age or travel distance increased. The BTEX concentrations were higher in leather trims buses than in non-leather trims ones, in air-conditioned buses than in non-air-conditioned ones, and in high-grade buses than in low-grade ones. According to the analysis of multiple linear regression equation, car age and in-car temperature were two most important factors influencing the BTEX pollution levels in the cabins of public buses.  相似文献   

2.
The ability of indigenous microorganisms to degrade benzene, toluene, ethylbenzene and xylenes (BTEX) in laboratory scale flow-through aquifer columns was tested separately with hydrogen peroxide (110 mg/l) and nitrate (330 mg/l as NO3) amendments to air-saturated influent nutrient solution. The continuous removal of individual components from all columns relative to the sterile controls provided evidence for biodegradation. In the presence of hydrogen peroxide, the indigeneous microorganisms degraded benzene and toluene (> 95%), meta- plus para-xylene (80%) and ortho-xylene (70%). Nitrate addition resulted in 90% removal of toluene and 25% removal of ortho-xylene. However, benzene, ethylbenzene, meta- and para-xylene concentrations were not significantly reduced after 42 days of operation. Following this experiment, low dissolved oxygen (< 1 mg/l) conditions were initiated with the nitrate-amended column influent in order to mimic contaminated groundwater conditions distal from a nutrient injection well. Toluene continued to be effectively degraded (> 90%), and more than 25% of the benzene, 40% of the ethylbenzene, 50% of the meta- plus para-xylenes and 60% of the ortho-xylene were removed after several months of operation.  相似文献   

3.
The aim of this work was to evaluate urinary benzene, toluene, ethylbenzene, m+p-xylene, o-xylene (BTEX), methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and naphthalene (NAP) as biomarkers of exposure to environmental pollutants. Personal air and urine samples from 108 subjects belonging to the Italian general population were compared. Urinary profiles were obtained by headspace gas chromatography-mass spectrometry. BTEX, MTBE, ETBE and NAP median airborne exposures during a 5-h sampling were 4.0, 25.3, 3.8, 9.3, 3.4, 3.4, < 0.8, and 3.4 µg/m3, respectively. Meanwhile, median urinary levels, as geometric means of three determinations were: 122, 397, 74, 127, 43, 49, < 15, and 46 ng/L, respectively. Urinary benzene and toluene concentrations were 4.6- and 1.2-fold higher in smokers than in non-smokers. For most chemicals, significant positive correlations between airborne exposure (log-transformed) and the corresponding biological marker (log-transformed) were found, with Pearson's r values for correlation, ranging from 0.228 to 0.396. Multiple linear regression analysis showed that the urinary level of these chemicals was influenced by personal airborne exposure, urinary creatinine, and urinary cotinine, with R2 0.733 for benzene. Urinary chemicals are useful biomarkers of environmental exposure. Given the ease of rapidly obtaining urine samples, they represent a non-invasive alternative to blood chemical analysis. The possibility of obtaining urinary exposure profiles makes this method an appealing tool for environmental epidemiology.  相似文献   

4.
Benzene, toluene, m/p-xylene and o-xylene (BTX) are toxic volatile organic compounds and ubiquitous air pollutants. Smoking and consumer products are indoor sources of BTX, whereas traffic and industrial activities are primary sources contributing to outdoor levels of BTX. The aim of this study was to characterize exposure of children to BTX by personal air sampling using diffusive samplers and by analysis of end-exhaled air. For this study, 101 children of 10-11 years of age were recruited from four primary schools in Southern Turkey during the warm season (May 2008). Two schools were situated in a residential area near primary and secondary iron and steel works (Payas) and two schools were located in a non-industrialized city (Iskenderun). The children and their parents were visited at home for an interview and to identify possible sources of BTX in the residence. Median concentrations of benzene determined by diffusive samplers were higher in Payas (4.1 μg/m3) than in Iskenderun (2.7 μg/m3, p < 0.001). For toluene, no differences were observed, whereas for xylene isomers air concentrations tended to be lower for children living in Payas. The median end-exhaled air concentrations were 8.2, 29, 3.8, and 5.7 pmol/L for benzene, toluene, m/p-xylene and o-xylene, respectively (Payas), and 6.9, 25, 4.9, and 6.0 pmol/L, respectively (Iskenderun). Concentrations of toluene in end-exhaled air were 50% higher in children living with household members who smoked indoors (p < 0.05) and benzene in end-exhaled air was more than 3-fold higher for those children who were exposed to tobacco smoke inside a vehicle (p < 0.001). End-exhaled concentrations of benzene were also higher in children living in a residence with an attached garage (p < 0.05). These exposure modifying factors were not identified when using the results obtained with diffusive samplers.  相似文献   

5.
In this study, the overall performance of a biofilter was evaluated in terms of its elimination capacity by using 3-D mesh techniques. The overall results indicate that the agreement between experimental data and model predictions is excellent for benzene, toluene, ethylbenzene and o-xylene (BTEX). In this study, the maximum removal rate (r max) values for BTEX were 0.0117, 0.0126, 0.0081 and 0.0146 g m–3 h–1, and the half-saturation constant (KS ) values were calculated to be 0.269, 0.297, 0.156 and 0.394 g m–3, respectively. For this system, the coefficients of determination (r 2) of BTEX compounds were greater than 0.97. The BTEX concentration profiles along the depth were also determined using a convection–diffusion reactor (CDR) model. The sums of squares of the errors (SSEs) of BTEX were 0.0078, 0.0059, 0.0129 and 0.0269, respectively, with r 2 values greater than 0.99 for all four compounds at low concentrations.  相似文献   

6.
Groundwater contamination with benzene, toluene, ethylbenzene and xylene (BTEX) has been increasing, thus requiring an urgent development of methodologies that are able to remove or minimize the damages these compounds can cause to the environment. The biodegradation process using microorganisms has been regarded as an efficient technology to treat places contaminated with hydrocarbons, since they are able to biotransform and/or biodegrade target pollutants. To prove the efficiency of this process, besides chemical analysis, the use of biological assessments has been indicated. This work identified and selected BTEX-biodegrading microorganisms present in effluents from petroleum refinery, and evaluated the efficiency of microorganism biodegradation process for reducing genotoxic and mutagenic BTEX damage through two test-systems: Allium cepa and hepatoma tissue culture (HTC) cells. Five different non-biodegraded BTEX concentrations were evaluated in relation to biodegraded concentrations. The biodegradation process was performed in a BOD Trak Apparatus (HACH) for 20 days, using microorganisms pre-selected through enrichment. Although the biodegradation usually occurs by a consortium of different microorganisms, the consortium in this study was composed exclusively of five bacteria species and the bacteria Pseudomonas putida was held responsible for the BTEX biodegradation. The chemical analyses showed that BTEX was reduced in the biodegraded concentrations. The results obtained with genotoxicity assays, carried out with both A. cepa and HTC cells, showed that the biodegradation process was able to decrease the genotoxic damages of BTEX. By mutagenic tests, we observed a decrease in damage only to the A. cepa organism. Although no decrease in mutagenicity was observed for HTC cells, no increase of this effect after the biodegradation process was observed either. The application of pre-selected bacteria in biodegradation processes can represent a reliable and effective tool in the treatment of water contaminated with BTEX mixture. Therefore, the raw petroleum refinery effluent might be a source of hydrocarbon-biodegrading microorganisms.  相似文献   

7.
We assessed 45 multifamily buildings (240 apartments) from Finland and 20 (96 apartments) from Lithuania, out of which 37 buildings in Finland and 15 buildings in Lithuania underwent energy retrofits. Building characteristics, retrofit activities, and energy consumption data were collected, and Indoor Air Quality (IAQ) parameters, including carbon monoxide (CO), nitrogen dioxide (NO2), formaldehyde (CH2O), selected volatile organic compounds (benzene, toluene, ethylbenzene, and xylenes (BTEX), radon, and microbial content in settled dust were measured before and after the retrofits. After the retrofits, heating energy consumption decreased by an average of 24% and 49% in Finnish and Lithuanian buildings, respectively. After the retrofits of Finnish buildings, there was a significant increase in BTEX concentrations (estimated mean increase of 2.5 µg/m3), whereas significant reductions were seen in fungal (0.6‐log reduction in cells/m2/d) and bacterial (0.6‐log reduction in gram‐positive and 0.9‐log reduction in gram‐negative bacterial cells/m2/d) concentrations. In Lithuanian buildings, radon concentrations were significantly increased (estimated mean increase of 13.8 Bq/m3) after the retrofits. Mechanical ventilation was associated with significantly lower CH2O concentrations in Finnish buildings. The results and recommendations presented in this paper can inform building retrofit studies and other programs and policies aimed to improve indoor environment and health.  相似文献   

8.
A long-term study on natural attenuation and remediation in soil and groundwater at the former military base Schäferhof-Süd (Niedersachsen) was performed at a former gasoline filling station. At this locality, a large residual source of benzene, toluene, ethylbenzene, xylenes (BTEX) and additional petroleum hydrocarbons is present in the soil. BTEX-concentrations in the groundwater and their correlation with groundwater level variations were monitored for three years. Within the monitoring period, a very dry summer was recorded, which caused the groundwater level to drop by 1.7 m and the BTEX concentrations to increase from 240 µg/l to 1300 µg/l at the site of contamination. The microbial degradation of BTEX was documented by data on consumption of electron acceptors (oxygen, nitrate or sulphate) and production of reduced products (Fe(II), methane). The degradation is further supported by the detection of metabolites. Therefore, the increasing BTEX concentrations were not a consequence of limited biological degradation.  相似文献   

9.
It has frequently been claimed that cycling in heavy traffic is unhealthy, more so than driving a car. To test this hypothesis, teams of two cyclists and two car drivers in two cars were equipped with personal air samplers while driving for 4 h on 2 different days in the morning traffic of Copenhagen. The air sample charcoal tubes were analysed for their benzene, toluene, ethylbenzene and xylene (BTEX) content and the air filters for particles (total dust). The concentrations of particles and BTEX in the cabin of the cars were 2-4 times greater than in the cyclists' breathing zone, the greatest difference being for BTEX. Therefore, even after taking the increased respiration rate of cyclists into consideration, car drivers seem to be more exposed to airborne pollution than cyclists.  相似文献   

10.
BTEX is the commonly used term for a group of toxic compounds (benzene, toluene, ethyl benzene, ortho-xylene and meta- and para-xylene), some of which, most notably benzene, are known carcinogens. The aim of this study is to measure the BTEX levels both inside and outside the homes of 352 one-year old children from the Valencia cohort of the INMA study (Spain) and to analyze the determinants of these levels. Passive samplers were used to measure BTEX levels during a 15 day period and a questionnaire was administered to gather information on potentially associated factors (sociodemographics, residential conditions, and lifestyle). The average concentrations of benzene, toluene, ethyl benzene, ortho-xylene, and meta- and para-xylene were 0.9, 3.6, 0.6, 0.6, and 1.0 μg/m3, respectively. On average, the indoor levels of all the compounds were approximately 2.5 times higher than those observed outdoors. Factors associated with higher BTEX concentrations inside the home were being the child of a mother of non-Spanish origin, living in a house that had been painted within the last year, living in an apartment, and not having air conditioning. Higher outdoor concentrations of BTEX depend on the residence being situated in a more urban zone, being located within the city limits, having living in a building with more than one story, residing in an area with a greater frequency of traffic, and the season of the year in which the sample was taken. The data thus obtained provide helpful information not only for implementing measures to reduce exposure to these pollutants, but also for evaluating the relation between such exposure and possible health risks for the children in the cohort.  相似文献   

11.
Lovanh N  Hunt CS  Alvarez PJ 《Water research》2002,36(15):3739-3746
The use of ethanol as an automotive fuel oxygenate represents potential economic and air-quality benefits. However, little is known about how ethanol may affect the natural attenuation of petroleum product releases. Chemostat experiments were conducted with four pure cultures (representing archetypes of the known aerobic toluene degradation pathways) to determine how ethanol affects benzene, toluene, ethylbenzene, and xylene (BTEX) biodegradation kinetics. In all cases, the presence of ethanol decreased the metabolic flux of toluene (measured as the rate of toluene degradation per cell). This negative effect was counteracted by an ethanol-supported increase in biomass, which is conducive to faster degradation rates. When the influent total organic carbon (TOC) of the toluene-ethanol mixture was kept constant, the metabolic flux of toluene was proportional to its relative contribution to the influent TOC. This empirical relationship was used to derive a mathematical model that simulated effluent benzene concentrations as a function of the influent mixed-substrate composition, the dilution rate, and Monod kinetic coefficients. Under carbon-limiting conditions (1 mg/L influent benzene), the data and model simulations showed an increase in benzene removal efficiency when ethanol was fed at low concentrations (ca. 1 mg/L) because its positive effect on cell growth outweighed its negative effect on the metabolic flux of benzene. High ethanol concentrations, however, had a negative effect, causing oxygen limitation and increasing effluent benzene concentrations to higher levels than when benzene was fed alone. The slower BTEX degradation rates expected at sites with high ethanol concentrations (e.g., at gasohol-contaminated sites) could result in longer BTEX plumes and a greater risk of exposure.  相似文献   

12.
In this study, the impact factors of temperature, relative humidity (RH), air exchange rate, and volatile organic compound (VOC) properties on the VOC (toluene, n-butyl acetate, ethylbenzene, and m,p-xylene) specific emission rates (SERs) and concentrations from wooden flooring were investigated by chamber test for 8 days. The tested wood in this study is not common solid wood, but composite wood made of combined wood fibers. The experiments were conducted in a stainless-steel environmental test chamber coated with Teflon. The experimental results within 8 days of testing showed that, when the temperature increased from 15 to 30 °C, the VOC SERs and concentrations increased 1.5–129 times. When the RH increased from 50% to 80%, the VOC concentrations and SERs increased 1–32 times. When the air change rate increased from 1 to 2 h−1, the VOC concentrations decreased 9–40%, while the VOC SERs increased 6–98%. The relations between the boiling points of the VOCs and each of the normalized VOC SERs and concentrations were linear with negative slopes. The relations between the vapor pressures of the VOCs and each of the normalized VOC SERs and concentrations were linear with positive slopes. At 15 °C, RH50%, the relations between the diffusivities of VOCs and each of the normalized VOC equilibrium SERs and concentrations were linear with a positive slope.  相似文献   

13.
Ambient concentrations of volatile organic compounds (VOCs) were measured at 40 rural sampling points in Navarre (northern Spain). Air samples were collected by means of sorbent passive sampling and analyzed by thermal desorption (TD) and gas chromatography/mass-selective detector (GC/MSD). A total of 140 VOCs were identified during the study, which was carried out between May to October 2004 for a total of a 10 biweekly sampling campaigns. Concentrations of benzene, toluene, ethylbenzene, m/p-xylenes, o-xylene (BTEX) and 1,3,5-trimethylbenzene were determined in order to investigate their temporal and spatial distributions. Geostatistical analysis pointed to traffic as the main emission source of these compounds. Supporting this idea, BTEX and nitrogen oxides concentrations were found to be highly significantly correlated (r = 0.495, P = 0.001), whereas a strong negative correlation between BTEX and ozone was also observed (r = -0.355, P = 0.025). The concentrations for the BTEX group were similar to the values that have been previously reported for other rural areas.  相似文献   

14.
Previous research has shown that indoor benzene levels in homes with attached garages are higher than homes without attached garages. Exhaust ventilation in attached garages is one possible intervention to reduce these concentrations. To evaluate the effectiveness of this intervention, a randomized crossover study was conducted in 33 Ottawa homes in winter 2014. VOCs including benzene, toluene, ethylbenzene, and xylenes, nitrogen dioxide, carbon monoxide, and air exchange rates were measured over four 48‐hour periods when a garage exhaust fan was turned on or off. A blower door test conducted in each garage was used to determine the required exhaust fan flow rate to provide a depressurization of 5 Pa in each garage relative to the home. When corrected for ambient concentrations, the fan decreased geometric mean indoor benzene concentrations from 1.04 to 0.40 μg/m3, or by 62% (P<.05). The garage exhaust fan also significantly reduced outdoor‐corrected geometric mean indoor concentrations of other pollutants, including toluene (53%), ethylbenzene (47%), m,p‐xylene (45%), o‐xylene (43%), and carbon monoxide (23%) (P<.05) while having no impact on the home air exchange rate. This study provides evidence that mechanical exhaust ventilation in attached garages can reduce indoor concentrations of pollutants originating from within attached garages.  相似文献   

15.
Natural attenuation of mono- (BTEX) and polycyclic aromatic hydrocarbons (PAHs) was studied in groundwater at a former gas plant site over a distance of about 500 m. The contamination source was located within a 4–6 m thick succession of interbedded silt and sand (K f =1,4?10?7 m/s) at a depth of about 5–6 m below the surface. Groundwater flow times between source and the receiving surface waters were determined on the order of a few hundred years. The main contaminants were found to be benzene and naphthalene with concentrations up to 200,000 and 8,500 μg/l, respectively. Over the past 9 years, concentrations within the contaminant plume have decreased and degradation of benzene was proven by compound specific carbon isotope analyses. In addition, sulphur isotope studies revealed that sulphate reduction has played a significant role. This was supported by ambient sulphate concentrations of 300–1,800 μg/l at the site that are sufficient to sustain a long-term perspective for this process. In agreement with these physico-chemical conditions, no transfer of BTEX or PAHs from the plume into the nearby river has been observed.  相似文献   

16.
The removal of benzene, toluene, ethyl benzene, and xylene (BTEX) using the electrolytic oxidation or Fenton’s reaction has been studied. The value of current and pH value were shown to produce a significant effect on electrolytic oxidation of BTEX. More than 95% of BTEX could be removed at 500 mA current within 8 hours. In the case of Fenton’s reaction it was established that more than 95% of BTEX could be removed at pH 4 with an addition of hydrogen peroxide in the amount of 12 mg/dm3. The treatment cost based on electrolytic oxidation amounted to between $0.04 and $5.1 USD/m3. For Fenton’s reaction, the treatment cost was between $0.16 and $0.65/m3. The costs of electrolytic oxidation and Fenton’s reaction were similar to the cost of electrodialysis and cheaper than the freeze–thaw and evaporation; however, these costs were higher than for air flotation and the use of anoxic/aerobic granular activated carbon.  相似文献   

17.
Monitoring groundwater benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations is the typical method to assess monitored natural attenuation (MNA) and bioremediation as corrective actions at gasoline-contaminated sites. Conclusive demonstration of bioremediation, however, relies on converging lines of chemical and biological evidence to support a decision. In this study, real-time PCR quantification of aromatic oxygenase genes was used to evaluate the feasibility of MNA at two gasoline-impacted sites. Phenol hydroxylase (PHE), ring-hydroxylating toluene monooxygenase (RMO), naphthalene dioxygenase (NAH), toluene monooxygenase (TOL), toluene dioxygenase (TOD), and biphenyl dioxygenase (BPH4) genes were routinely detected in BTEX-impacted wells. Aromatic oxygenase genes were not detected in sentinel wells outside the plume indicating that elevated levels of oxygenase genes corresponded to petroleum hydrocarbon contamination. Total aromatic oxygenase gene copy numbers detected in impacted wells were on the order of 10(6)-10(9)copies L(-1). PHE, RMO, NAH, TOD, and BPH4 gene copies positively correlated to total BTEX concentration. Mann-Kendall analysis of benzene concentrations was used to evaluate the status of the dissolved BTEX plume. The combination of trend analysis of contaminant concentrations with quantification of aromatic oxygenase genes was used to assess the feasibility of MNA as corrective measures at both sites.  相似文献   

18.
Potential for activated persulfate degradation of BTEX contamination   总被引:7,自引:0,他引:7  
Liang C  Huang CF  Chen YJ 《Water research》2008,42(15):4091-4100
The present study focused on evaluation of activated persulfate (PS) anion (S(2)O(8)(2-)) oxidative degradation of benzene, toluene, ethylbenzene, and xylene (constituents of gasoline and known collectively as BTEX) contamination. The results indicated that BTEX were effectively oxidized by PS in aqueous and soil slurry systems at 20 degrees C. PS can be activated thermally, or chemically activated with Fe(2+) to form the sulfate radical (SO(4)(-)) with a redox potential of 2.4V. The degradation rate constants of BTEX were found to increase with increased persulfate concentrations. For two PS/BTEX molar ratios of 20/1 and 100/1 experiments, the observed aqueous phase BTEX degradation half-lives ranged from 3.0 to 23.1 days and 1.5 to 20.3 days in aqueous and soil slurry systems, respectively. In the interest of accelerating contaminant degradation, Fe(2+) and chelated Fe(2+) activated persulfate oxidations were investigated. For all iron activation experiments, BTEX and persulfate degradations appear to occur almost instantaneously and result in partial BTEX removals. It is speculated that the incomplete degradation reaction may be due to the cannibalization of SO(4)(-) in the presence of excess Fe(2+). Furthermore, the effects of various chelating agents including, hydroxylpropyl-beta-cyclodextrin (HPCD), ethylenediaminetetraacetic acid (EDTA), and citric acid (CA) on maintaining available Fe(2+) and activating PS for the degradation of benzene were studied. The results indicated that HPCD and EDTA may be less susceptible to chelated Fe(2+). In contrast, CA is a more suitable chelating agent in the iron activated persulfate system and with a PS/CA/Fe(2+)/B molar ratio of 20/5/5/1 benzene can be completely degraded within a 70-min period.  相似文献   

19.
VOCs and PAHs emissions from creosote-treated wood in a field storage area   总被引:1,自引:0,他引:1  
In this study, the emissions of volatile organic compounds (VOCs, in this case aromatic hydrocarbons containing one benzene ring and furans) and polycyclic aromatic hydrocarbons (PAHs) from wood recently treated with creosote are examined. The VOCs and PAHs were identified and quantified in the gas phase. Additionally, the PAHs were quantified in the particulate phase. Glass multi-sorbent tubes (Carbotrap, Carbopack X, Carboxen-569) were used to hold the VOCs. The analysis was performed using automatic thermal desorption (ATD) coupled with capillary gas chromatography/mass spectrometry (GC/MS). PAHs vapours were collected on XAD-2 resin, and particulate matter was collected on glass fibre filters. The PAHs were analysed using GC/MS. The main components of the vapours released from the creosote-treated wood were naphthalene, toluene, m+p-xylene, ethylbenzene, o-xylene, isopropylbenzene, benzene and 2-methylnaphthalene. VOCs emission concentrations ranged from 35 mg m(-3) of air on the day of treatment to 5 mg m(-3) eight days later. PAHs emission concentrations ranged from 28 microg m(-3) of air on the day of treatment to 4 microg m(-3) eight days later. The air concentrations of PAHs in particulate matter were composed predominantly of benzo[b+j]fluoranthene, benzo[a]anthracene, chrysene, fluoranthene, benzo[e]pyrene and 1-methylnaphthalene. The emission concentrations of particulate polycyclic aromatic hydrocarbons varied between 0.2 and 43.5 ng m(-3). Finally, the emission factors of VOCs and PAHs were determined.  相似文献   

20.
Hydrochemical investigations were performed at a contaminated site in the area of a former gasplant at Düsseldorf, Germany, between October, 1995 and November, 1996. The changes of the biodegradation processes in the aquifer during the remediation of groundwater and soil were monitored. The organic contaminants present in the groundwater were mainly BTEX (benzene, toluene, ethylbenzene, xylenes) and low moleuclar weight PAH (plycyclic aromatic hydrocarbons). At the beginning of the remediation activities, natural degradation of the contaminants occurred with sulfate reduction as the prevailing terminal electron accepting process. Due to oxygen input into the aquifer during soil removal the biodegradation process was disturbed and the concentrations of aromatic hydroarbons and sulfate rose significantly. The aromatic acids occuring as metabolites of the aromatic hydrocarbons reacted specifically to the changes in the degradation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号