首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical recording demands a meticulous write strategy to control the laser beam power and regulate the phase change layer temperature tightly. The width, height, and delay of a string of short pulses applied to the laser diode need to be adjusted in fine steps, and the writing speed varies widely per applications. A multi-phase phase-locked loop (PLL) tracks a wide range of clock frequencies, and provides a low-jitter time base for write pulses. With two enabling circuit concepts, PLL loop filter voltage folding/unfolding and switch-in of parallel MOS resistors in delay cells, it is possible to operate a PLL to cover a frequency range spanning over three octaves with one VCO. A 10-stage differential VCO is phase-locked to the input channel clock ranging from 26 to 420 MHz (1/spl times/-16/spl times/ DVD speed), and its 20-phase outputs are used to generate write pulses. The pulsewidth and delay are programmed with 120 /spl plusmn/ 40 ps time resolution. The prototype chip fabricated in 0.35 /spl mu/m CMOS occupies 3.5/spl times/3.3 mm/sup 2/, and consumes 294 mW at 3.3 V.  相似文献   

2.
射频锁相环型频率合成器的CMOS实现   总被引:4,自引:1,他引:3       下载免费PDF全文
池保勇  石秉学  王志华 《电子学报》2004,32(11):1761-1765
本论文实现了一个射频锁相环型频率合成器,它集成了压控振荡器、双模预分频器、鉴频鉴相器、电荷泵、各种数字计数器、数字寄存器和控制电路以及与基带电路的串行接口.它的鉴频鉴相频率、输出频率和电荷泵的电流大小都可以通过串行接口进行控制,还实现了内部压控振荡器和外部压控振荡器选择、功耗控制等功能,这些都使得该频率合成器具有极大的适应性,可以应用于多种通信系统中.该锁相环型频率合成器已经采用0.25μm CMOS工艺实现,测试结果表明,该频率合成器使用内部压控振荡器时的锁定范围为1.82GHz~1.96GHz,在偏离中心频率25MHz处的相位噪声可以达到-119.25dBc/Hz.该频率合成器的模拟部分采用2.7V的电源电压,消耗的电流约为48mA.  相似文献   

3.
A fully integrated, phase-locked loop (PLL) clock generator/phase aligner for the POWER3 microprocessor has been designed using a 2.5-V, 0.40-μm digital CMOS6S process. The PLL design supports multiple integer and noninteger frequency multiplication factors for both the processor clock and an L2 cache clock. The fully differential delay-interpolating voltage-controlled oscillator (VCO) is tunable over a frequency range determined by programmable frequency limit settings, enhancing yield and application flexibility. PLL lock range for the maximum VCO frequency range settings is 340-612 MHz. The charge-pump current is programmable for additional control of the PLL loop dynamics. A differential on-chip loop filter with common-mode correction improves noise rejection. Cycle-cycle jitter measurements with the microprocessor actively executing instructions were 10.0 ps rms, 80 ps peak to peak (P-P) measured from the clock tree. Cycle-cycle jitter measured for the processor in a reset state with the clock tree active was 8.4 ps rms, 62 ps P-P. PLL area is 1040×640 μm2. Power dissipation is <100 mW  相似文献   

4.
This paper presents a direct‐conversion CMOS transceiver for fully digital DS‐UWB systems. The transceiver includes all of the radio building blocks, such as a T/R switch, a low noise amplifier, an I/Q demodulator, a low pass filter, a variable gain amplifier as a receiver, the same receiver blocks as a transmitter including a phase‐locked loop (PLL), and a voltage controlled oscillator (VCO). A single‐ended‐to‐differential converter is implemented in the down‐conversion mixer and a differential‐to‐single‐ended converter is implemented in the driver amplifier stage. The chip is fabricated on a 9.0 mm2 die using standard 0.18 µm CMOS technology and a 64‐pin MicroLead Frame package. Experimental results show the total current consumption is 143 mA including the PLL and VCO. The chip has a 3.5 dB receiver gain flatness at the 660 MHz bandwidth. These results indicate that the architecture and circuits are adaptable to the implementation of a wideband, low‐power, and high‐speed wireless personal area network.  相似文献   

5.
设计实现了一个快速捕获,带宽可调的电荷泵型锁相环电路。采用了一种利用状态机拓展鉴频鉴相器检测范围的方法,加快了环路的锁定;通过SPI总线实现电荷泵电流配置和调整VCO延时单元的延迟时间,优化了电路性能。芯片采用中芯国际0.18μmCMOS工艺,测试结果表明,锁相环锁定在100MHz时的抖动均方值为24ps,偏离中心频率1MHz处的相位噪声为-98.62dBc/Hz。  相似文献   

6.
刘辉华  李平  李磊  徐小良  张宪 《微电子学》2017,47(5):662-665
详细分析了自偏置锁相环(PLL)的工作原理,采用一种新颖的折叠式电荷泵(CP)结构,包含一个宽摆幅电流镜,实现了更好的电流匹配,降低了PLL的系统抖动。该PLL采用130 nm CMOS工艺进行制造。VCO的调频范围为0.43~1.54 GHz。在1.25 GHz工作频率下,频偏1 MHz处,PLL的相位噪声为-89.6 dBc/Hz,均值抖动为3.03 ps,峰峰值抖动为18.16 ps,芯片面积仅为0.34 mm2。  相似文献   

7.
高性能数字时钟数据恢复电路   总被引:2,自引:1,他引:1  
设计了一个数字时钟数据恢复电路,采用相位选择锁相环进行相位调整,在不影响系统噪声性能的前提下大大降低了芯片面积。该电路应用于100 MHz以太网收发系统中,采用中芯国际0.18μm标准CMOS工艺实现,核心电路相位选择锁相环的芯片面积小于0.12 mm2,电流消耗低于4 mA。仿真与测试结果表明,恢复时钟抖动的峰峰值小于350 ps,相位偏差小于400 ps,以太网接收误码率小于10-12,电路可以满足接收系统的要求。  相似文献   

8.
This paper describes a phase-locked loop (PLL) based frequency synthesizer. The voltage-controlled oscillator (VCO) utilizing a ring of single-ended current-steering amplifiers (CSA) provides low noise, wide operating frequencies, and operation over a wide range of power supply voltage. A programmable charge pump circuit automatically configures the loop gain and optimizes it over the whole frequency range. The measured PLL frequency ranges are 0.3-165 MHz and 0.3-100 MHz at 5 V and 3 V supplies, respectively (the VCO frequency is twice PLL output). The peak-to-peak jitter is 81 ps (13 ps rms) at 100 MHz. The chip is fabricated with a standard 0.8-μm n-well CMOS process  相似文献   

9.
This paper presents the design and experimental results of a 0.4 ps rms jitter (integrated from 3 kHz to 300 MHz offset at 2.5 GHz) 1–3 GHz tunable ring-oscillator PLL for integrated clock multiplier applications. A new loop filter structure based on a sample-reset phase-to-voltage converter and a Gm-C filter decouples reference spur performance from charge-pump current matching and loop filter leakage, while enables phase error preamplification to lower PLL in-band noise without reducing VCO analog tuning range or increasing loop filter capacitor size. The ring-oscillator VCO features programmability of phase noise and power consumption at a given frequency. The PLL is implemented in a digital 0.13 $mu{hbox{m}}$ CMOS process using only 1.2 V devices, occupies 0.07 ${hbox{mm}}^{2}$ and consumes 23 mW excluding reference clock receiver for 2.5 GHz output at the lowest phase noise mode.   相似文献   

10.
This paper presents a 10-GHz low spur and low jitter phase-locked loop (PLL).An improved low phase noise VCO and a dynamic phase frequency detector with a short delay reset time are employed to reduce the noise of the PLL.We also discuss the methodology to optimize the high frequency prescaler's noise and the charge pump's current mismatch.The chip was fabricated in a SMIC 0.13-μm RF CMOS process with a 1.2-V power supply.The measured integrated RMS jitter is 757 fs (1 kHz to 10 MHz); the phase noise is -89 and-118.1 dBc/Hz at 10 kHz and 1 MHz frequency offset,respectively; and the reference frequency spur is below -77 dBc.The chip size is 0.32 mm2 and the power consumption is 30.6 mW.  相似文献   

11.
A low jitter,low spur multiphase phase-locked loop(PLL) for an impulse radio ultra-wideband(IR-UWB) receiver is presented.The PLL is based on a ring oscillator in order to simultaneously meet the jitter requirement, low power consumption and multiphase clock output.In this design,a noise and matching improved voltage-controlled oscillator(VCO) is devised to enhance the timing accuracy and phase noise performance of multiphase clocks.By good matching achieved in the charge pump and careful choice of the l...  相似文献   

12.
袁莉  周玉梅  张锋 《半导体技术》2011,36(6):451-454,473
设计并实现了一种采用电感电容振荡器的电荷泵锁相环,分析了锁相环中鉴频/鉴相器(PFD)、电荷泵(CP)、环路滤波器(LP)、电感电容压控振荡器(VCO)的电路结构和设计考虑。锁相环芯片采用0.13μm MS&RF CMOS工艺制造。测试结果表明,锁相环锁定的频率为5.6~6.9 GHz。在6.25 GHz时,参考杂散为-51.57 dBc;1 MHz频偏处相位噪声为-98.35 dBc/Hz;10 MHz频偏处相位噪声为-120.3 dBc/Hz;在1.2 V/3.3 V电源电压下,锁相环的功耗为51.6 mW。芯片总面积为1.334 mm2。  相似文献   

13.
This paper describes the design of a fully integrated low phase noise CMOS phase-locked loop for mixedsignal SoCs with a wide range of operating frequencies.The design proposes a multi-regulator PLL architecture,in which every noise-sensitive block from the PLL top level is biased from a dedicated linear or shunt regulator,reducing the parasitic noise and spur coupling between different PLL building blocks.Supply-induced VCO frequency sensitivity of the PLL is less than 0.07%-f_(vco)/1%-V_(DD).The design...  相似文献   

14.
A 1.5-V 5.5-GHz fully integrated phase-locked loop (PLL) has been implemented in a 0.25-μm foundry digital CMOS process. From a 5.5-GHz carrier, the in-band phase noise can be as low as -88 dBc/Hz at a 40-kHz offset, while the phase noise for the free-running VCO is -116 dBc/Hz at an 1-MHz offset. The VCO core current is 4.6 mA. The prescaler is implemented using a variation of the source-coupled logic (SCL) structure to reduce the switching noise, and thus to reduce the PLL side-band spurs. At -18 dBm signal power measured off chip, the switching noise coupled through substrate and metal interconnect generates spurs with power levels less than -99 dBm when the loop is open. A new charge-pump circuit is developed to reduce the current glitch at the output node. By incorporating a voltage doubler, the voltage dynamic range at the charge-pump output and thus the VCO control voltage range is increased from 1.3 to 2.6 V with immeasurable phase noise and spurious level degradation to the PLL. When the loop is closed, the power levels of side-band spurs at the offset frequency equal to the ~43-MHz reference frequency are < -69 dBc. The total power consumption of the PLL including that for the output buffers is ~23 mW  相似文献   

15.
This paper proposes a fast-settling frequency-presetting PLL frequency synthesizer.A mixed-signal VCO and a digital processor are developed to accurately preset the frequency of VCO and greatly reduce the settling time.An auxiliary tuning loop is introduced in order to reduce reference spur caused by leakage current.The digital processor can automatically compensate presetting frequency variation with process and temperature,and control the operation of the auxiliary tuning loop.A 1.2 GHz integer-N synthesizer with 1 MHz reference input Was implemented in a 0.18μm process.The measured results demonstrate that the typical settling time of the synthesizer is less than 3μs,and the phase noise is-108 dBc/Hz@1MHz.The reference spur is-52 dBc.  相似文献   

16.
A technique for reducing the supply voltage sensitivity of a ring oscillator using on-chip calibration is described. A 1-V 0.13-mum CMOS PLL demonstrates robust performance against VCO supply noise over operating frequencies of 0.5 to 2 GHz. In the presence of a 10-mV 1-MHz VCO supply noise, the measured rms jitter of the proposed PLL with on-chip calibration is 3.95 ps at a 1.4-GHz operating frequency, while a conventional design measures 8.22 ps rms jitter. For 10-MHz VCO supply noise, the measured rms jitter is improved from 16.8 ps to 3.97 ps. The total power consumption of the PLL is 9.6 mW at 1.4 GHz, and the combined core die area of the PLL and the calibration circuitry is 0.064 mm2  相似文献   

17.
在PLL电路设计中,压控振荡器设计是电路的关键模块,按类型又主要分为LC震荡器和环形振荡器两种,其性能直接决定了相位噪声、频率稳定度及覆盖范围。文章介绍了一款1.8 GHz的基于交叉耦合对LC结构的低噪声CMOS压控振荡器的设计,并对调谐范围、相位噪声以及电路起振条件等做了分析讨论。该设计采用0.18μm 6层金属CMOS工艺制造,模块面积为0.3 mm2,电路经过Cadence SpectreRF仿真,VCO的输出范围为1 594~2 023 MHz,中心频率1.8 GHz输出时相位噪声为-118 dBc/Hz@600 kHz,1.9 GHz输出时相位噪声为-121 dBc/Hz@600 kHz。结果表明该VCO设计达到了较宽的频率覆盖范围和较低的相位噪声,可以满足低噪声PLL的设计要求。  相似文献   

18.
设计了一种应用于GPS射频接收芯片的低功耗环形压控振荡器.环路由5级差分结构的放大器构成.芯片采用TSMC 0.18 μm CMOS工艺,核心电路面积0.25 mm×0.05 mm.测试结果表明,采用1.75 V电源电压供电时,电路的功耗约为9.2 mW,振荡器中心工作频率为62 MHz,相位噪声为-89.39 dBc/Hz @ 1 MHz,该VCO可应用于锁相环和频率合成器中.  相似文献   

19.
基于TSMC 180 nm工艺设计并流片测试了一款用于高能物理实验的电子读出系统的低噪声、低功耗锁相环芯片。该芯片主要由鉴频鉴相器、电荷泵、环路滤波器、压控振荡器和分频器等子模块组成,在锁相环电荷泵模块中,使用共源共栅电流镜结构精准镜像电流以减小电流失配和用运放钳位电压进一步减小相位噪声。测试结果表明,该锁相环芯片在1.8 V电源电压、输入50 MHz参考时钟条件下,可稳定输出200 MHz的差分时钟信号,时钟均方根抖动为2.26 ps(0.45 mUI),相位噪声在1 MHz频偏处为-105.83 dBc/Hz。芯片整体功耗实测为23.4 mW,锁相环核心功耗为2.02 mW。  相似文献   

20.
This paper proposes LC voltage‐controlled oscillator (VCO) phase‐locked loop (PLL) and ring‐VCO PLL topologies with low‐phase noise. Differential control loops are used for the PLL locking through a symmetrical transformer‐resonator or bilaterally controlled varactor pair. A differential compensation mechanism suppresses out‐band spurious tones. The prototypes of the proposed PLL are implemented in a CMOS 65‐nm or 45‐nm process. The measured results of the LC‐VCO PLL show operation frequencies of 3.5 GHz to 5.6 GHz, a phase noise of –118 dBc/Hz at a 1 MHz offset, and a spur rejection of 66 dBc, while dissipating 3.2 mA at a 1 V supply. The ring‐VCO PLL shows a phase noise of –95 dBc/Hz at a 1 MHz offset, operation frequencies of 1.2 GHz to 2.04 GHz, and a spur rejection of 59 dBc, while dissipating 5.4 mA at a 1.1 V supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号