首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用动态光散射法研究了伊朗轻质减压渣油和大庆减压渣油模拟乳状液的粒度特征。研究表明,伊朗轻质减压渣油和大庆减压渣油模拟乳状液的初始粒径较小,粒度分布较窄;随着时间的延长,其粒径逐渐增大,粒度分布变宽;随着馏分增重或体相质量浓度的增加,模拟乳状液的初始粒径增大。随着油相中芳烃含量增加,伊朗轻质减压渣油和大庆减压渣油中重馏分模拟乳状液的初始粒径增大,而大庆减压渣油轻馏分模拟乳状液的初始粒径减小。随着水相中碱或盐的加入,伊朗轻质减压渣油和大庆减压渣油模拟乳状液的初始粒径均增大。  相似文献   

2.
采用超临界萃取分离方法,将大庆减压渣油及伊朗轻质减压渣油按相对分子质量分割为两个系列共33个馏分。考察了它们的化学组成和界面张力,比较了两个系列减渣馏分在不同条件下油-水界面张力的变化规律。结果表明,大庆减渣馏分较伊朗轻质减渣馏分的芳香共轭结构和极性基团含量少,界面活性低。油相芳烃含量对两个系列油-水界面张力的影响不同,对大庆中间馏分的油-水界面张力影响大,而对伊朗轻质减渣中间馏分的影响小。水相因素对两个系列油-水界面张力的影响相似。水相中可溶性盐对油-水界面张力影响小,沉淀性盐对油-水界面张力影响大,对伊朗轻质减渣馏分的影响更明显。pH值对中间馏分油-水界面张力影响大,而对轻、重馏分影响小。  相似文献   

3.
采用相对分子质量测定、元素分析、紫外光谱和红外光谱等手段,确定了大庆减压渣油与伊朗重质减压渣油的分子参数,并考察了两个系列减压渣油馏分的模拟乳状液的稳定性。在此基础上,采用复合变量分析探讨了减压渣油馏分的各分子参数之间的关系,以及这些分子参数与模拟乳状液稳定性的关系。结果表明,减压渣油馏分不同的分子参数对其模拟乳状液稳定性的影响不同,其中馏分的相对分子质量、稠环芳香结构的含量、脂肪烃相对含量、羰基相对含量对模拟乳状液的稳定性影响最明显。一般情况下,馏分的相对分子质量越大、稠环芳香结构和羰基含量越高,则乳状液越稳定。  相似文献   

4.
采用剪切界面粘度仪考察了伊朗轻质减压渣油超临界分离馏分的油-水界面粘度。结果表明,随着馏分的增重,油-水界面粘度增大。随着剪切速率的增大,界面膜结构被破坏,油-水界面粘度减小。油相中馏分质量分数以及水相中盐的增加,使得馏分的油-水界面吸附量增大,油-水界面粘度增大;油相中芳烃含量以及水相pH值的增大,改变了馏分在油-水界面的吸附状态,油水界面粘度减小。  相似文献   

5.
采用相对分子质量测定、元素分析、紫外光谱和红外光谱等手段,确定了大庆减压渣油与伊朗重质减压渣油的分子参数,并考察了两个系列减压渣油馏分的模拟乳状液的稳定性。在此基础上,采用复合变量分析探讨了减压渣油馏分的各分子参数之间的关系,以及这些分子参数与模拟乳状液稳定性的关系。结果表明,减压渣油馏分不同的分子参数对其模拟乳状液稳定性的影响不同,其中馏分的相对分子质量、稠环芳香结构的含量、脂肪烃相对含量、羰基相对含量对模拟乳状液的稳定性影响最明显。一般情况下,馏分的相对分子质量越大、稠环芳香结构和羰基含量越高,则乳状液越稳定。  相似文献   

6.
《石油化工》2016,45(3):319
针对新疆油田,利用表面活性剂、部分水解聚丙烯酰胺(HPAM)以及不同的碱复配得到碱-表面活性剂-聚合物(ASP)三元复合驱,并分别配制成乳状液。利用Zeta电位分析仪和界面张力仪等考察了不同乳状液的Zeta电位和油水界面张力。实验结果表明,含石油磺酸盐阴离子表面活性剂(KPS)的乳状液的Zeta电位绝对值最大,含甜菜碱型表面活性剂(APS)的乳状液的Zeta电位绝对值最小。随表面活性剂含量的增大,乳状液的Zeta电位绝对值呈不同的增大趋势。对于LPS/KPS(LPS为烷醇酰胺类非离子型表面活性剂)复配表面活性剂,其乳状液的Zeta电位主要由KPS控制。LPS/KPS复配表面活性剂降低原油界面张力的效果明显。采用ASP三元复合驱时,表面活性剂对界面电位的影响变弱;随碱含量的增大,Zeta电位降低;随HPAM含量的增大,Zeta电位绝对值相应增大。  相似文献   

7.
为了研究耐盐疏水缔合聚合物对油水界面性质的影响。采用界面张力仪、表面粘弹性仪和Zeta电位仪研究了不同浓度聚合物对原油模拟油与模拟水体系的界面张力、界面剪切粘度、Zeta电位的影响。结果表明.水相为疏水缔合聚合物溶液时,随聚合物浓度增加,原油模拟油油水界面张力降低.界面剪切粘度增加,Zeta电位的绝对值总体呈增加的趋势。  相似文献   

8.
研究了聚合物、石油磺酸盐及二元复合驱作为驱油剂对孤岛油田采出的原油乳状液稳定性的影响,考察用不同指标表征乳状液稳定性的关联性。结果表明,在60℃、破乳剂TA1031质量浓度为100mg/L时,随各种驱油剂质量浓度的增大,原油乳状液破乳脱水率降低,120min时脱水率由高到低的原油乳状液体系的顺序为石油磺酸盐体系、聚合物体系、二元复合驱体系,对应的稳定性评分SV值逐渐增大,体系的静态稳定性逐渐增强;对应的破乳后水相Zeta电位绝对值、电导率由大到小的顺序为二元复合驱体系、聚合物体系、石油磺酸盐体系;水相中的油滴中值粒径由大到小的顺序为石油磺酸盐体系、聚合物体系、二元复合驱体系。水相的Zeta电位值越负、电导率越高、水中油滴中值粒径越小,原油乳状液的稳定性越强,脱水率也越低,表明表征化学驱采出液稳定性的各指标具有很好的关联性。  相似文献   

9.
采用Langmuir-Blodgett(L-B)技术考察了伊朗轻质减渣馏分的L-B性质(πA曲线,膜稳定曲线),扩散相中减渣馏分的体相质量浓度和在扩展溶剂甲苯-庚烷中芳烃含量,以及水相的pH值和盐对减渣馏分的L-B性质的影响。结果表明,随着馏分的增重,伊朗轻质减渣馏分由竖立吸附状态逐渐倒伏直至铺展吸附于水相表面,馏分分子所占面积逐渐增大,膜性质随之发生变化。随着馏分体相质量浓度的增大,馏分分子以缔合体形式成膜,其中轻馏分分子缔合体较小,重馏分分子缔合体较大。随着扩散相中芳烃含量的增大,轻馏分分子以收缩状态成膜,重馏分分子以铺展状态成膜;而随着扩散相中芳烃含量的降低,轻馏分分子以铺展状态成膜,重馏分分子以缔合状态成膜。由于水相中Ca^2 离子可与馏分中酸性基团反应,使得馏分分子充分铺展吸附于水相表面或使馏分分子间相互联结,其所占水相表面积增大。  相似文献   

10.
采用双分子类脂膜实验装置研究了大庆减压渣油与伊朗轻质减压渣油馏分的油-水薄液膜的膜电容(膜厚度)、排液-破裂方式、膜稳定时间(膜寿命)。结果表明,减渣馏分越重,分子吸附状态稳定,其油-水薄液膜越厚,膜稳定性越好。减渣馏分油-水薄液膜的排液-破裂有连续排液-破裂方式、“黑洞”排液-破裂方式和逐层破裂排液方式。当馏分越轻、馏分在油相中质量分数越低、表面活性剂加量越多时,以连续排液-破裂方式为主;而馏分越重、馏分在油相中的质量分数越高、表面活性剂加量越少时,以“黑洞”排液-破裂方式和逐层破裂排液方式为主。油相的组成,水相中的酸、碱、盐以及外加表面活性剂对减渣馏分的界面活性、吸附状态、电荷吸附量影响不同,相应的膜电容(膜厚度)和膜稳定时间也不同。  相似文献   

11.
固体颗粒对O/W乳状液稳定性的影响研究   总被引:6,自引:1,他引:5  
采用界面张力仪、表面粘弹性仪和Zeta电位仪研究了部分水解聚丙烯酰胺(HPAM)溶液与大庆原油模拟油之间界面性质以及固体颗粒对这些界面性质的影响.结果表明,含100 ms/L的HPAM溶液中加入固体颗粒后,聚合物溶液与原油模拟油之间的界面张力上升,界面剪切粘度下降,但随着固体颗粒浓度的增加,聚合物溶液与原油模拟油间的界面张力和界面剪切粘度基本保持不变.在聚合物溶液中加入固体颗粒后,其与原油模拟油形成的O/W乳状液稳定性变差,乳状液内部油珠表面Zeta电位负值增加.O/W乳状液的稳定性取决于油水界面剪切粘度和Zeta电位的双重影响.  相似文献   

12.
 以埕东泡沫复合驱采出液为研究对象, 配制一系列含不同浓度泡沫剂的模拟水和模拟油组成的体系,采用界面张力仪、表面黏弹性仪和Zeta电位仪测定了这些体系的油-水界面特性,考察了发泡剂浓度对这些界面特性及乳状液稳定性的影响。结果表明,由于泡沫复合驱采出水中含有固体悬浮物,使得过滤后采出水-原油模拟油体系的油-水界面张力和界面剪切粘度降低。模拟水中加入发泡剂后,模拟水-原油模拟油体系的油-水界面张力降低,界面剪切粘度增加,但变化幅度较小,而油滴表面的Zeta电位绝对值增大;原油与含发泡剂的模拟水所形成的W/O和O/W乳状液的稳定性随发泡剂浓度的增加而增强。  相似文献   

13.
以埕东泡沫复合驱采出液为研究对象,配制一系列含不同浓度泡沫剂的模拟水和模拟油组成的体系,采用界面张力仪、表面黏弹性仪和Zeta电位仪测定了这些体系的油-水界面特性,考察了发泡剂浓度对这些界面特性及乳状液稳定性的影响.结果表明,由于泡沫复合驱采出水中含有固体悬浮物,使得过滤后采出水-原油模拟油体系的油-水界面张力和界面剪切黏度降低.模拟水中加入发泡剂后,模拟水-原油模拟油体系的油-水界面张力降低,界面剪切粘度增加,但变化幅度较小,而油滴表面的Zeta电位绝对值增大;原油与含发泡剂的模拟水所形成的W/O和O/W乳状液的稳定性随发泡剂浓度的增加而增强.  相似文献   

14.
采用双分子类脂膜实验装置研究了大庆减压渣油与伊朗轻质减压渣油馏分的油-水薄液膜的膜电容(膜厚度)、排液-破裂方式、膜稳定时间(膜寿命)。结果表明,减渣馏分越重,分子吸附状态稳定,其油-水薄液膜越厚,膜稳定性越好。减渣馏分油-水薄液膜的排液-破裂有连续排液-破裂方式、“黑洞”排液-破裂方式和逐层破裂排液方式。当馏分越轻、馏分在油相中质量分数越低、表面活性剂加量越多时,以连续排液-破裂方式为主;而馏分越重、馏分在油相中的质量分数越高、表面活性剂加量越少时,以“黑洞”排液-破裂方式和逐层破裂排液方式为主。油相的组成,水相中的酸、碱、盐以及外加表面活性剂对减渣馏分的界面活性、吸附状态、电荷吸附量影响不同,相应的膜电容(膜厚度)和膜稳定时间也不同。  相似文献   

15.
采用剪切界面粘度仪考察了表面活性剂Tween40和Span80的油-水界面粘度及其对大庆、伊朗轻质和伊朗重质减压渣油馏分的油-水界面粘度的影响。结果表明,随着油相中Tween40、Span80和油相中芳烃质量分数的增加,油-水界面粘度均增大。并且,当油相中Tween40、Span80的临界胶束(CMC)质量分数在其质量分数变化范围内时,油-水界面粘度有大幅度的增加。Tween40铺展吸附于油-水界面,其油-水界面粘度较大。Span80竖立吸附于油-水界面,其油-水界面粘度较小。Tween40取代减渣馏分铺展吸附于油-水界面,其油-水界面粘度较低,相互间的差别也较小,随着油相中Tween40质量分数的增大,油-水界面粘度降低。Span80楔人减渣馏分油-水界面吸附层,共同构成油-水界面结构。对线性结构多的减渣馏分,随着油相中Span80质量分数的增大,油-水界面粘度逐渐增大。对芳香稠环结构多的减渣馏分,随着油相中Span80质量分数的增大,油-水界面粘度逐渐减小。  相似文献   

16.
苏里格上古气藏普遍含有凝析油,部分集气站的凝析油采出液乳化严重,对集气站的正常生产影响较大。 以苏里格气田凝析油采出液为研究对象,开展典型区块采出液乳化特征分析及乳化影响因素研究。结果表明,5 个站点采出水凝析油乳状液的组成差异较大,乳状液的稳定与Zeta电位和矿化度呈现良好的对应关系,Zeta电 位的绝对值越大,乳状液越稳定,水相矿化度越高,乳状液的稳定性越低。5个采出水乳状液中醇类质量分数为 1.48%~4.80%,酯类质量分数为2.08%~6.34%,醇类和酯类极性有机物会在界面上与亲水性的表面活性剂形 成复合界面膜,有利于形成凝析油乳状液。苏里格气田乳状液总体上是以水相为连续相、油为分散相(O/W); 对于部分油滴,油为连续相,水为分散相(W/O),最终形成复杂的水包油包水(W/O/W)型。随着泡排剂、固体 悬浮物用量的增加,凝析油模拟乳状液体积分数均呈现先增大后减小的趋势。当泡排剂质量分数为0.6%、悬 浮物质量分数在0.4%时,凝析油模拟乳状液体积分数最大,而缓蚀剂浓度对凝析油模拟乳状液形成体积无明 显影响。  相似文献   

17.
以经过过滤的脱水孤东原油在脱活煤油中的10%溶液为模拟原油,分别加有粉状含黏土预交联聚合物(0~600 mg/L)、胜利石油磺酸盐(0~300 mg/L)、磺酸盐表面活性剂(0~300 mg/L)的模拟孤东采出污水(含Ca2+、Mg2+、HCO3-,矿化度11.98 g/L)溶液为水相,制备水包油乳状液,测定乳状液中油珠的zeta电位,结果表明zeta电位均为负值,随水相中化学剂加入浓度的增大,其绝对值增大,即乳状液稳定性增大.以3种化学剂为因素进行正交设计实验,当3种化学剂共存时,聚合物和胜利石油磺酸盐是影响zeta电位的显著因素,该磺酸盐型表面活性剂的影响不显著.对所得结果作了解释.  相似文献   

18.
采用剪切界面粘度仪考察了表面活性剂Tween40和Span80的油 水界面粘度及其对大庆、伊朗轻质和伊朗重质减压渣油馏分的油 水界面粘度的影响。结果表明,随着油相中Tween40、Span80和油相中芳烃质量分数的增加,油 水界面粘度均增大。并且,当油相中Tween40、Span80的临界胶束(CMC)质量分数在其质量分数变化范围内时,油 水界面粘度有大幅度的增加。Tween40铺展吸附于油 水界面,其油 水界面粘度较大。Span80竖立吸附于油 水界面,其油 水界面粘度较小。Tween40取代减渣馏分铺展吸附于油 水界面,其油 水界面粘度较低,相互间的差别也较小,随着油相中Tween40质量分数的增大,油 水界面粘度降低。Span80楔入减渣馏分油 水界面吸附层,共同构成油 水界面结构。对线性结构多的减渣馏分,随着油相中Span80质量分数的增大,油 水界面粘度逐渐增大。对芳香稠环结构多的减渣馏分,随着油相中Span80质量分数的增大,油 水界面粘度逐渐减小。  相似文献   

19.
《精细石油化工》2017,(1):69-72
通过配制模拟气田采出悬浮液,借助激光粒度仪、紫外分光光度计和Zeta电位仪,研究了固体颗粒、矿化度、泡排剂等对悬浮液稳定性的影响。结果表明:随着黏土颗粒浓度的增加,悬浮液的粒径中值减小、稳定性增强;矿化度对乳状液的稳定性有抑制作用,随矿化度的升高,乳液滴的粒径中值和Zeta电位逐渐增大,稳定性降低;不同黏土矿物由于组分差异,对油水润湿性不同,使固体颗粒在油水界面上的吸附有一定差异,最终导致不同黏土颗粒对乳状液的稳定性不同;在一定范围内,乳状液的粒径随泡排剂浓度增大而减小,稳定性增强。  相似文献   

20.
采用Langmuir-Blodgett(L-B)技术研究了大庆减渣馏分的L-B性质(πA曲线,膜稳定曲线),以及减渣馏分在扩散相中的体相质量浓度和芳烃含量、水相的pH值和盐对减渣馏分的L-B性质的影响。结果表明,由于大庆减渣馏分中的蜡含量高,其在水相表面成膜压缩性较好,各馏分的,πA曲线形状相似。馏分体相质量浓度增大,馏分以缔合体形式成膜,缔合体结构越大,πA曲线左移越大。扩展溶剂中芳烃含量的变化对馏分中胶质、沥青质及蜡的分散状态影响不同。随着扩展溶剂中芳烃含量的增大,轻馏分中蜡质的成分多,对应,πA曲线左移;重馏分以沥青质为主,对应,πA曲线右移。馏分可吸附水相中的同性离子而相互排斥,同时,水相中碱或Ca^2 抖离子也可与馏分中的酸性基团反应,使馏分充分铺展吸附于水相表面或馏分间相互联结,以至馏分分子所占水相表面积增大,对应的,πA曲线右移。膜稳定性曲线先下降然后趋于稳定,反映出大庆减渣馏分膜结构中存在不稳定结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号