共查询到17条相似文献,搜索用时 187 毫秒
1.
基于KPCA-HSMM设备退化状态识别与故障预测方法研究 总被引:2,自引:1,他引:2
为消除多通道观测信息冗余,压缩高维故障特征,提出基于KPCA多通道特征信息融合的HSMM设备退化状态识别与故障预测新方法.首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量,然后,利用KPCA方法对多通道的小波相关特征尺度熵向量进行冗余消除和特征融合,得到多通道的融合小波相关特征尺度熵向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模型,从而实现设备退化状态识别与故障预测.将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性. 相似文献
2.
基于小波相关特征尺度熵的HSMM设备退化状态识别与故障预测方法 总被引:3,自引:0,他引:3
隐半马尔可夫模型(HSMM)是隐马尔可夫模型(HMM)的一种扩展模型,是在已定义的HMM结构上加入了时间组成部分,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,与HMM相比具有更好的建模能力和分析能力,而且可以直接用于预测.基于振动信号与语音信号的相似性,将HSMM引入机械设备退化状态识别与故障预测中,提出基于小波相关特征尺度熵(WCFSE)的HSMM设备退化状态识别与故障预测方法.首先将小波相关滤波法与信息熵理论相结合得到能敏感表征故障严重程度的WCFSE向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模型,从而实现设备退化状态识别与故障预测.将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性. 相似文献
3.
4.
与传统的隐Markov模型(HMM)相比较而言,应用分层隐Markov模型(HHMM)对设备进行状态识别有诸多优点,而且能以概率的形式更为精确地计算识别结果。针对模型参数随着设备状态的增加呈指数倍增这一问题,引入动态贝叶斯网络这一新的方法,由于该方法可以有效地降低模型的计算复杂度并缩短推理时间,所以将HHMM表达为动态贝叶斯网络,利用预处理的振动信号对设备的健康状态进行识别;针对现有状态分类方法的局限性,提出了基于K均值算法和交叉验证方法相结合的状态数优化方法;以齿轮箱全寿命实验为依据,对该模型实现状态识别的基本框架和计算过程进行了研究,研究结果为复杂设备的状态识别提供了新的思路。 相似文献
5.
针对传统隐半马尔科夫模型(HSMM)在故障诊断和预测应用中存在的不足,对传统HSMM做了以下改进:一是将状态持续时间概率分布和监测值概率分布连续化,并假定其服从威布尔分布;二是基于状态开始时间的识别,提出了状态剩余持续时间;三是提出了时变转移概率的概念,给出了各时刻转移概率的计算方法。确立了基于改进HSMM的故障诊断和预测的方法体系,给出了故障诊断判据和设备剩余寿命的计算式。案例研究表明方法是合理有效的。 相似文献
6.
基于改进HMM的潜在电子故障状态识别模型 总被引:1,自引:0,他引:1
针对复杂电子装备隐性故障难以诊断的难题,在深入分析隐马尔可夫模型的核心问题及基本算法的基础上,探讨了其在故障诊断应用中存在的主要问题,建立了多状态电子装备可靠性评估模型,利用系统可靠性评估结果作为隐马尔可夫模型的初始模型特征量,改进了传统的隐马尔可夫模型,并对Baum-Welch训练算法进行了优化,形成了一套适于复杂电子装备潜在故障状态跟踪识别的数学模型.实验结果显示,理论方法及模型能够更好地识别潜在故障状态,加快了模型训练速度,提高了故障状态识别率. 相似文献
7.
《机械强度》2017,(3):511-517
随着对机电设备安全性和可靠性要求的不断提高,准确获取趋势性故障发展历程的退化特征信息并建立有效的故障预测模型是提高设备运行可靠性的关键。隐马尔可夫模型(Hidden Markov Model,HMM)具有描述隐藏状态和观测状态的双随机过程属性,与设备的退化过程在某种程度上是相似的,因此成为故障预测模型的研究热点。综述国内外基于隐马尔可夫模型的退化评估与预测方法,重点论述基于隐马尔可夫模型及其改进方法隐半马尔可夫模型(Hidden semi-Markov Model,HSMM)的机械设备故障预测方法,分析比较各种方法的优缺点,并总结展望基于隐马尔可夫模型故障预测方法的发展趋势。 相似文献
8.
9.
设计液压缸泄漏的模拟实验,分别提取压力、位移信号的时域频域组合特征,利用概率神经网络作为故障分类器,对"无泄漏"、"轻微泄漏"、"严重泄漏"三种故障状态进行识别与分类。采用Matlab仿真的方法测试了径向基传播率和训练样本变化时模型的训练效果。 相似文献
10.
机械设备从正常到故障往往经历一系列退化状态,正确识别与估计设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。隐半马尔可夫模型(Hidden Semi-MarkovModels,HSMM)是隐马尔可夫模型(hidden Markov models,HMM)的一种扩展模型,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,比HMM具有更好的建模能力和分析能力。由状态识别和HMM本质上的相通性,将HSMM引入到机械设备的状态识别中,提出了一种基于HSMM状态识别方法,描述了该模型的拓扑结构和主要参数以及相应的训练和识别算法。最后通过滚动轴承试验系统验证了方法的有效性。 相似文献
11.
12.
A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction 总被引:1,自引:0,他引:1
Ying PengMing Dong 《Mechanical Systems and Signal Processing》2011,25(1):237-252
Health monitoring and prognostics of equipment is a basic requirement for condition-based maintenance (CBM) in many application domains. This paper presents an age-dependent hidden semi-Markov model (HSMM) based prognosis method to predict equipment health. By using hazard function (h.f.), CBM is based on a failure rate which is a function of both the equipment age and the equipment conditions. The state values of the equipment condition considered in CBM, however, are limited to those stochastically increasing over time and those having non-decreasing effect on the hazard rate. The previous HSMM based prognosis algorithm assumed that the transition probabilities are only state-dependent, which means that the probability of making transition to a less healthy state does not increase with the age. In the proposed method, in order to characterize the deterioration of equipment, three types of aging factors that discount the probabilities of staying at current state while increasing the probabilities of transitions to less healthy states are integrated into the HSMM. With an iteration algorithm, the original transition matrix obtained from the HSMM can be renewed with aging factors. To predict the remaining useful life (RUL) of the equipment, hazard rate is introduced to combine with the health-state transition matrix. With the classification information obtained from the HSMM, which provides the current health state of the equipment, the new RUL computation algorithm could be applied for the equipment prognostics. The performances of the HSMMs with aging factors are compared by using historical data colleted from hydraulic pumps through a case study. 相似文献
13.
深度学习在设备故障预测与健康管理中的应用 总被引:4,自引:0,他引:4
在智能制造背景下,大数据驱动的设备故障预测与健康管理日益受到各界重视。深度学习能够在层次结构的特征提取过程中发现更多的隐藏知识,在领域自适应方面具有良好的数据适应性,近年来逐渐成为设备故障预测与健康管理的研究热点,并在设备故障诊断和预测中得到了广泛的应用。通过系统回顾近年来深度学习在设备故障预测与健康管理中应用,总结、分类和解释关于这一热点主题的主要文献,讨论了各种体系结构和相关理论。在此基础上,阐述了深度学习在设备故障诊断和预测方面所取得的主要成果、面临的挑战、以及未来的发展趋势,为设备故障预测与健康管理领域选择、设计或实现深度学习架构,提供明确的方向。 相似文献
14.
15.
16.
基于LSSVM-HMM的发射机故障预测研究 总被引:1,自引:0,他引:1
针对雷达发射机的故障状态具有强的随机性和不确定性问题,结合最小二乘支持向量机(LSSVM)能够对信号进行非线性预测和隐马尔可夫模型(HMM)能够进行较为精确的似然度概率计算的特点,提出了基于LSSVM-HMM的故障状态预测模型.通过基于小波包的SSNF算法对采集的磁控管电流信号进行去噪后提取有效的非平稳和非线性特征,用正常时的特征向量来训练HMM,并利用该模型对未知信号的特征向量及用LSSVM对其预测到的特征向量进行状态监测,从而获得故障出现的概率.实验结果表明,该模型用于小样本的发射机故障预测是有效的尝试. 相似文献
17.
Prognosis is a key technology to improve reliability,safety and maintainability of products,a lot of researchers have been devoted to this technology.But to improve the predict accuracy of remaining li... 相似文献