首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The standard finite element method (FEM) is unreliable to compute approximate solutions of the Helmholtz equation for high wave numbers due to the dispersion, unless highly refined meshes are used, leading to unacceptable resolution times. The paper presents an application of the element‐free Galerkin method (EFG) and focuses on the dispersion analysis in one dimension. It shows that, if the basis contains the solution of the homogenized Helmholtz equation, it is possible to eliminate the dispersion in a very natural way while it is not the case for the finite element methods. For the general case, it also shows that it is possible to choose the parameters of the method in order to minimize the dispersion. Finally, theoretical developments are validated by numerical experiments showing that, for the same distribution of nodes, the element‐free Galerkin method solution is much more accurate than the finite element one. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with an effective numerical implementation of the Trefftz boundary element method, for the analysis of two‐dimensional potential problems, defined in arbitrarily shaped domains. The domain is first discretized into multiple subdomains or regions. Each region is treated as a single domain, either finite or infinite, for which a complete set of solutions of the problem is known in the form of an expansion with unknown coefficients. Through the use of weighted residuals, this solution expansion is then forced to satisfy the boundary conditions of the actual domain of the problem, leading thus to a system of equations, from which the unknowns can be readily determined. When this basic procedure is adopted, in the analysis of multiple‐region problems, proper boundary integral equations must be used, along common region interfaces, in order to couple to each other the unknowns of the solution expansions relative to the neighbouring regions. These boundary integrals are obtained from weighted residuals of the coupling conditions which allow the implementation of any order of continuity of the potential field, across the interface boundary, between neighbouring regions. The technique used in the formulation of the region‐coupling conditions drives the performance of the Trefftz boundary element method. While both of the collocation and Galerkin techniques do not generate new unknowns in the problem, the technique of Galerkin presents an additional and unique feature: the size of the matrix of the final algebraic system of equations which is always square and symmetric, does not depend on the number of boundary elements used in the discretization of both the actual and region‐interface boundaries. This feature which is not shared by other numerical methods, allows the Galerkin technique of the Trefftz boundary element method to be effectively applied to problems with multiple regions, as a simple, economic and accurate solution technique. A very difficult example is analysed with this procedure. The accuracy and efficiency of the implementations described herein make the Trefftz boundary element method ideal for the study of potential problems in general arbitrarily‐shaped two‐dimensional domains. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
An element‐wise locally conservative Galerkin (LCG) method is employed to solve the conservation equations of diffusion and convection–diffusion. This approach allows the system of simultaneous equations to be solved over each element. Thus, the traditional assembly of elemental contributions into a global matrix system is avoided. This simplifies the calculation procedure over the standard global (continuous) Galerkin method, in addition to explicitly establishing element‐wise flux conservation. In the LCG method, elements are treated as sub‐domains with weakly imposed Neumann boundary conditions. The LCG method obtains a continuous and unique nodal solution from the surrounding element contributions via averaging. It is also shown in this paper that the proposed LCG method is identical to the standard global Galerkin (GG) method, at both steady and unsteady states, for an inside node. Thus, the method, has all the advantages of the standard GG method while explicitly conserving fluxes over each element. Several problems of diffusion and convection–diffusion are solved on both structured and unstructured grids to demonstrate the accuracy and robustness of the LCG method. Both linear and quadratic elements are used in the calculations. For convection‐dominated problems, Petrov–Galerkin weighting and high‐order characteristic‐based temporal schemes have been implemented into the LCG formulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
We propose inf–sup testing for finite element methods with upwinding used to solve convection–diffusion problems. The testing evaluates the stability of a method and compactly displays the numerical behaviour as the convection effects increase. Four discretization schemes are considered: the standard Galerkin procedure, the full upwind method, the Galerkin least‐squares scheme and a high‐order derivative artificial diffusion method. The study shows that, as expected, the standard Galerkin method does not pass the inf–sup tests, whereas the other three methods pass the tests. Of these methods, the high‐order derivative artificial diffusion procedure introduces the least amount of artificial diffusion. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
We present a high‐order hybridizable discontinuous Galerkin method for solving elliptic interface problems in which the solution and gradient are nonsmooth because of jump conditions across the interface. The hybridizable discontinuous Galerkin method is endowed with several distinct characteristics. First, they reduce the globally coupled unknowns to the approximate trace of the solution on element boundaries, thereby leading to a significant reduction in the global degrees of freedom. Second, they provide, for elliptic problems with polygonal interfaces, approximations of all the variables that converge with the optimal order of k + 1 in the L2(Ω)‐norm where k denotes the polynomial order of the approximation spaces. Third, they possess some superconvergence properties that allow the use of an inexpensive element‐by‐element postprocessing to compute a new approximate solution that converges with order k + 2. However, for elliptic problems with finite jumps in the solution across the curvilinear interface, the approximate solution and gradient do not converge optimally if the elements at the interface are isoparametric. The discrepancy between the exact geometry and the approximate triangulation near the curved interfaces results in lower order convergence. To recover the optimal convergence for the approximate solution and gradient, we propose to use superparametric elements at the interface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
We present a hybridized discontinuous Petrov–Galerkin (HDPG) method for the numerical solution of steady and time‐dependent scalar conservation laws. The method combines a hybridization technique with a local Petrov–Galerkin approach in which the test functions are computed to maximize the inf‐sup condition. Since the Petrov–Galerkin approach does not guarantee a conservative solution, we propose to enforce this explicitly by introducing a constraint into the local Petrov–Galerkin problem. When the resulting nonlinear system is solved using the Newton–Raphson procedure, the solution inside each element can be locally condensed to yield a global linear system involving only the degrees of freedom of the numerical trace. This results in a significant reduction in memory storage and computation time for the solution of the matrix system, albeit at the cost of solving the local Petrov–Galerkin problems. However, these local problems are independent of each other and thus perfectly scalable. We present several numerical examples to assess the performance of the proposed method. The results show that the HDPG method outperforms the hybridizable discontinuous Galerkin method for problems involving discontinuities. Moreover, for the test case proposed by Peterson, the HDPG method provides optimal convergence of order k + 1. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A finite element method is used for computing the non‐linear sloshing response of liquid in a two‐dimensional rigid rectangular tank with rigid baffles. The potential formulation is considered for the liquid domain and a mixed Eulerian–Langrangian scheme is adopted. The solution is obtained by the Galerkin method. The fourth‐order Runge–Kutta method is employed to advance the solution in the time domain. A regridding technique is applied to the free surface of the liquid, which effectively eliminates the numerical instabilities without the use of artificial smoothing. Through the comparison with the available results for the rectangular tank without baffle, the validity of the present formulation is checked and then extended to the solution of tanks with rigid baffles. The effects of baffle parameters such as position, dimension and numbers on the non‐linear sloshing response are examined. The present numerical solution procedure is also applied to the non‐linear sloshing problems in a circular cylindrical container with annular baffle. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
Soft elastohydrodynamic lubrication (EHL) problem is studied for a reciprocating elastomeric seal with full account of finite configuration changes. The fluid part is described by the Reynolds equation which is formulated on the deformed boundary of the seal treated as a hyperelastic body. The paper is concerned with the finite element (FE) treatment of this soft EHL problem. Displacement-based FE discretization is applied for the solid part. The Reynolds equation is discretized using the FE method or, alternatively, the discontinuous Galerkin method, both employing higher-order interpolation of pressure. The performance of both methods is assessed by studying convergence and stability of the solution for a benchmark problem of an O-ring seal. It is shown that the solution may exhibit spurious oscillations which occur in severe lubrication conditions. Mesh refinement results in reduction of these oscillations, while increasing the pressure interpolation order or application of the discontinuous Galerkin method does not help significantly.  相似文献   

9.
This paper studies a time-discontinuous Galerkin finite element method for structural dynamic problems, by which both displacements and velocities are approximated as piecewise linear functions in the time domain and may be discontinuous at the discrete time levels. A new iterative solution algorithm which involves only one factorization for each fixed time step size and a few iterations at each step is presented for solving the resulted system of coupled equations. By using the jumps of the displacements and the velocities in the total energy norm as error indicators, an adaptive time-stepping procedure for selecting the proper time step size is described. Numerical examples including both single-DOF and multi-DOF problems are used to illustrate the performance of these algorithms. Comparisons with the exact results and/or the results by the Newmark integration scheme are given. It is shown that the time-discontinuous Galerkin finite element method discussed in this study possesses good accuracy (third order) and stability properties, its numerical implementation is not difficult, and the higher computational cost needed in each time step is compensated by use of a larger time step size.  相似文献   

10.
特征值问题迭代伽略金法与Rayleigh商加速   总被引:3,自引:0,他引:3  
该文讨论特征值问题非协调有限元和混合有限元的加速计算方法。基于迭代伽略金法和Rayleigh商加速技巧,我们建立了特征值问题Wilson非协调有限元和Ciarlet-Raviart混合有限元的加速计算方案。这些新方案把在细网格上解一个特征值问题简化为在粗网格上解一个特征值问题和在细网格上解一个线性方程。文中证明了新方案的计算结果仍然保持了渐近最优精度阶,并用数值实验验证了理论结果。  相似文献   

11.
Intended to avoid the complicated computations of elasto‐plastic incremental analysis, limit analysis is an appealing direct method for determining the load‐carrying capacity of structures. On the basis of the static limit analysis theorem, a solution procedure for lower‐bound limit analysis is presented firstly, making use of the element‐free Galerkin (EFG) method rather than traditional numerical methods such as the finite element method and boundary element method. The numerical implementation is very simple and convenient because it is only necessary to construct an array of nodes in the domain under consideration. The reduced‐basis technique is adopted to solve the mathematical programming iteratively in a sequence of reduced self‐equilibrium stress subspaces with very low dimensions. The self‐equilibrium stress field is expressed by a linear combination of several self‐equilibrium stress basis vectors with parameters to be determined. These self‐equilibrium stress basis vectors are generated by performing an equilibrium iteration procedure during elasto‐plastic incremental analysis. The Complex method is used to solve these non‐linear programming sub‐problems and determine the maximal load amplifier. Numerical examples show that it is feasible and effective to solve the problems of limit analysis by using the EFG method and non‐linear programming. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Represented by the element free Galerkin method, the meshless methods based on the Galerkin variational procedure have made great progress in both research and application. Nevertheless, their shape functions free of the Kronecker delta property present great troubles in enforcing the essential boundary condition and the material continuity condition. The procedures based on the relaxed variational formulations, such as the Lagrange multiplier‐based methods and the penalty method, strongly depend on the problem in study, the interpolation scheme, or the artificial parameters. Some techniques for this issue developed for a particular method are hard to extend to other meshless methods. Under the framework of partition of unity and strict Galerkin variational formulation, this study, taking Poisson's boundary value problem for instance, proposes a unified way to treat exactly both the material interface and the nonhomogeneous essential boundary as in the finite element analysis, which is fit for any partition of unity‐based meshless methods. The solution of several typical examples suggests that compared with the Lagrange multiplier method and the penalty method, the proposed method can be always used safely to yield satisfactory results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
In this work we propose a method which combines the element‐free Galerkin (EFG) with an extended partition of unity finite element method (PUFEM), that is able to enforce, in some limiting sense, the essential boundary conditions as done in the finite element method (FEM). The proposed extended PUFEM is based on the moving least square approximation (MLSA) and is capable of overcoming singularity problems, in the global shape functions, resulting from the consideration of linear and higher order base functions. With the objective of avoiding the presence of singular points, the extended PUFEM considers an extension of the support of the classical PUFE weight function. Since the extended PUFEM is closely related to the EFG method there is no need for special approximation functions with complex implementation procedures, and no use of the penalty and/or multiplier method is required in order to approximately impose the essential boundary condition. Thus, a relatively simple procedure is needed to combine both methods. In order to attest the performance of the method we consider the solution of an analytical elastic problem and also some coupled elastoplastic‐damage problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents fracture mechanics analysis using the wavelet Galerkin method and extended finite element method. The wavelet Galerkin method is a new methodology to solve partial differential equations where scaling/wavelet functions are used as basis functions. In solid/structural analyses, the analysis domain is divided into equally spaced structured cells and scaling functions are periodically placed throughout the domain. To improve accuracy, wavelet functions are superposed on the scaling functions within a region having a high stress concentration, such as near a hole or notch. Thus, the method can be considered a refinement technique in fixed‐grid approaches. However, because the basis functions are assumed to be continuous in applications of the wavelet Galerkin method, there are difficulties in treating displacement discontinuities across the crack surface. In the present research, we introduce enrichment functions in the wavelet Galerkin formulation to take into account the discontinuous displacements and high stress concentration around the crack tip by applying the concept of the extended finite element method. This paper presents the mathematical formulation and numerical implementation of the proposed technique. As numerical examples, stress intensity factor evaluations and crack propagation analyses for two‐dimensional cracks are presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
High‐order accurate methods for convection‐dominated problems have the potential to reduce the computational effort required for a given order of solution accuracy. The state of the art in this field is more advanced for Eulerian methods than for semi‐Lagrangian (SLAG) methods. In this paper, we introduce a new SLAG method that is based on combining the modified method of characteristics with a high‐order interpolating procedure. The method employs the finite element method on triangular meshes for the spatial discretization. An L2 interpolation procedure is developed by tracking the feet of the characteristic lines from the integration nodes. Numerical results are illustrated for a linear advection–diffusion equation with known analytical solution and for the viscous Burgers’ equation. The computed results support our expectations for a robust and highly accurate finite element SLAG method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The meshless element‐free Galerkin (EFG) method is extended to allow computation of the limit load of plates. A kinematic formulation that involves approximating the displacement field using the moving least‐squares technique is developed. Only one displacement variable is required for each EFG node, ensuring that the total number of variables in the resulting optimization problem is kept to a minimum, with far fewer variables being required compared with finite element formulations using compatible elements. A stabilized conforming nodal integration scheme is extended to plastic plate bending problems. The evaluation of integrals at nodal points using curvature smoothing stabilization both keeps the size of the optimization problem small and also results in stable and accurate solutions. Difficulties imposing essential boundary conditions are overcome by enforcing displacements at the nodes directly. The formulation can be expressed as the problem of minimizing a sum of Euclidean norms subject to a set of equality constraints. This non‐smooth minimization problem can be transformed into a form suitable for solution using second‐order cone programming. The procedure is applied to several benchmark beam and plate problems and is found in practice to generate good upper‐bound solutions for benchmark problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The research work extends the scaled boundary finite element method to non‐deterministic framework defined on random domain wherein random behaviour is exhibited in the presence of the random‐field uncertainties. The aim is to blend the scaled boundary finite element method into the Galerkin spectral stochastic methods, which leads to a proficient procedure for handling the stress singularity problems and crack analysis. The Young's modulus of structures is considered to have random‐field uncertainty resulting in the stochastic behaviour of responses. Mathematical expressions and the solution procedure are derived to evaluate the statistical characteristics of responses (displacement, strain, and stress) and stress intensity factors of cracked structures. The feasibility and effectiveness of the presented method are demonstrated by particularly chosen numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In the paper an improved element free Galerkin method is presented for heat conduction problems with heat generation and spatially varying conductivity. In order to improve computational efficiency of meshless method based on Galerkin weak form, the nodal influence domain of meshless method is extended to have arbitrary polygon shape. When the dimensionless size of the nodal influence domain approaches 1, the Gauss quadrature point only contributes to those nodes in whose background cell the Gauss quadrature point is located. Thus, the bandwidth of global stiff matrix decreases obviously and the node search procedure is also avoided. Moreover, the shape functions almost possess the Kronecker delta function property, and essential boundary conditions can be implemented without any difficulties. Numerical results show that arbitrary polygon shape nodal influence domain not only has high computational accuracy, but also enhances computational efficiency of meshless method greatly.  相似文献   

19.
A rigorous computational framework for the dimensional reduction of discrete, high‐fidelity, nonlinear, finite element structural dynamics models is presented. It is based on the pre‐computation of solution snapshots, their compression into a reduced‐order basis, and the Galerkin projection of the given discrete high‐dimensional model onto this basis. To this effect, this framework distinguishes between vector‐valued displacements and manifold‐valued finite rotations. To minimize computational complexity, it also differentiates between the cases of constant and configuration‐dependent mass matrices. Like most projection‐based nonlinear model reduction methods, however, its computational efficiency hinges not only on the ability of the constructed reduced‐order basis to capture the dominant features of the solution of interest but also on the ability of this framework to compute fast and accurate approximations of the projection onto a subspace of tangent matrices and/or force vectors. The computation of the latter approximations is often referred to in the literature as hyper reduction. Hence, this paper also presents the energy‐conserving sampling and weighting (ECSW) hyper reduction method for discrete (or semi‐discrete), nonlinear, finite element structural dynamics models. Based on mesh sampling and the principle of virtual work, ECSW is natural for finite element computations and preserves an important energetic aspect of the high‐dimensional finite element model to be reduced. Equipped with this hyper reduction procedure, the aforementioned Galerkin projection framework is first demonstrated for several academic but challenging problems. Then, its potential for the effective solution of real problems is highlighted with the realistic simulation of the transient response of a vehicle to an underbody blast event. For this problem, the proposed nonlinear model reduction framework reduces the CPU time required by a typical high‐dimensional model by up to four orders of magnitude while maintaining a good level of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
为避免金属体积成形有限元法模拟中网格畸变造成网格重划和模拟精度降低,采用无网格法模拟金属体积成形.利用无网格法近似位移场,建立金属体积成形的无网格法连续性控制方程,采用罚函数法施加本征边界条件和体积不变条件,基于Markov变分原理推导了金属体积成形的无网格Galerkin求解列式.用数值计算法求解该列式,实现金属体积成形的无网格模拟.数值结果表明,无网格法能有效处理金属体积成形中出现的大变形,避免了网格畸变和重划,具有较高的模拟精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号