首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article deals with the global robust stabilisation for a class of switched nonlinear systems under arbitrary switchings. The system under consideration is in lower triangular form and contains uncertainty. Both common Lyapunov function and state feedback controller are simultaneously constructed by backstepping such that the closed-loop system is globally robustly asymptotically stable under arbitrary switchings. Lastly, the design method proposed is extended to the uncertain switched nonlinear systems in nested lower triangular form to solve the global robust stabilisation problem under arbitrary switchings. Two examples are given to show the effectiveness of the proposed methods.  相似文献   

2.
This paper is concerned with the global finite-time stabilisation problem for a class of switched nonlinear systems under arbitrary switchings. All subsystems of the studied switched system under consideration are in lower triangular form. Based on the adding one power integrator technique, both a class of non-Lipschitz continuous state feedback controllers and a common Lyapunov function are simultaneously constructed such that the closed-loop switched system is global finite-time stable under arbitrary switchings. In the controller design process, a common coordinate transformation of all subsystems is exploited to avoid using individual coordinate transformations for subsystems. Finally, two examples are given to show the effectiveness of the proposed method.  相似文献   

3.
The problem of global stabilization for a class of switched nonlinear feedforward systems under arbitrary switchings is investigated in this paper. Based on the integrator forwarding technique and the common Lyapunov function method, we design bounded state feedback controllers of individual subsystems to guarantee asymptotic stability of the closed-loop system. A common coordinate transformation of all subsystems is exploited to avoid individual coordinate transformations for subsystems that are required when applying the forwarding recursive design scheme. An example is provided to demonstrate the effectiveness of the proposed design method.  相似文献   

4.
In this paper, globally asymptotical stabilization problem for a class of planar switched nonlinear systems with an output constraint via smooth output feedback is investigated. To prevent output constraint violation, a common tangent‐type barrier Lyapunov function (tan‐BLF) is developed. Adding a power integrator approach (APIA) is revamped to systematically design state‐feedback stabilizing control laws incorporating the common tan‐BLF. Then, based on the designed state‐feedback controllers and a constructed common nonlinear observer, smooth output‐feedback controllers, which can make the system output meet the predefined constraint during operation, are proposed to deal with the globally asymptotical stabilization problem of planar switched nonlinear systems under arbitrary switchings. A numerical example is employed to verify the proposed method.  相似文献   

5.
This paper investigates the problem of full state constraints-based adaptive control for a class of switched nonlinear pure-feedback systems under arbitrary switchings. First, the switched pure-feedback system is transformed into a switched strict-feedback system with non-affine terms based on the mean value theorem. Then, by exploiting the common Lyapunov function (CLF) method, the Barrier Lyapunov function method and backstepping, state feedback controllers of individual subsystems and a common Barrier Lyapunov function (CBLF) are constructed, which guarantee that all signals in the closed-loop system are global uniformly bounded under arbitrary switchings, and full state constraints are not violated. Furthermore, the tracking error can converge to a bounded compact set. Two examples, which include a single-link robot as a practical example, are provided to demonstrate the effectiveness of the proposed design method.  相似文献   

6.
This paper is concerned with the problem of global output feedback stabilization in probability for a class of switched stochastic nonlinear systems under arbitrary switchings. The subsystems are assumed to be in output feedback form and driven by white noise. By introducing a common Lyapunov function, the common output feedback controller independent of switching signals is constructed based on the backstepping approach. It is proved that the zero solution of the closed-loop system is fourth-moment exponentially stable. An example is given to show the effectiveness of the proposed method.  相似文献   

7.
This paper addresses global robust H control for a class of switched nonlinear systems with uncertainty under arbitrary switchings. Each subsystem is in lower triangular form. The uncertainties are assumed to be in a known compact set. The backstepping design technique is used to design a smooth state feedback controller that renders the associated closed‐loop switched system globally robustly asymptotically stable and imposes a pre‐specified upper bound to the L 2‐gain under arbitrary switchings. An example is provided to demonstrate the efficacy of the design approach.  相似文献   

8.
This paper investigates the problem of robust fault‐tolerant control for a class of uncertain switched nonlinear systems in lower triangular form. A system of this class involves parameter uncertainties and unknown nonlinear disturbances. A sufficient condition for the problem to be solvable under arbitrary switching is given in terms of linear matrix inequalities (LMIs). State feedback controllers of subsystems are designed by using the solutions to the matrix inequalities to guarantee global asymptotic stability of the closed‐loop systems in presence of actuator failures and under arbitrary switching. A practical system of hybrid haptic display is analyzed to demonstrate the proposed design method.  相似文献   

9.
This paper addresses the problem of global finite-time stabilization for a class of uncertain switched nonlinear systems via output feedback under arbitrary switchings. Based on the adding a power integrator approach, we design a homogeneous observer and controller for the nominal switched system without the perturbing nonlinearities. Then, a scaling gain is introduced into the proposed output feedback stabilizer to implement global finite-time stability of the closed-loop system. In addition, the proposed approach can be also extended to a class of switched nonlinear systems with upper-triangular growth condition. Two examples are given to illustrate the effectiveness of the proposed method.  相似文献   

10.
This paper studies the adaptive state feedback control for a class of switched time‐varying stochastic high‐order nonlinear systems under arbitrary switchings. Based on the common Lyapunov function and using the inductive method, virtual controllers are designed step by step and the form of the input signal of the system is constructed at the last. The unknown parameters are addressed by the tuning function method. In particular, both the designed state feedback controller and the adaptive law are independent of switching signals. Based on the designed controller, the boundness of the state variables can be guaranteed in probability. Furthermore, without considering the Wiener process or with the known parameter in the assumption, adaptive finite‐time stabilization and finite‐time stabilization in probability can be obtained, respectively. Finally, numerical simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

11.
This paper is concerned with the stabilization problem for a class of state‐constrained switched nonlinear system in p‐normal form in a domain. A key point in the backstepping design procedure is to find a common stabilizing function at each step. A barrier Lyapunov function, which grows to infinity when its arguments approach some limits, is introduced to ensure that the state constraint is not violated at any time. Bounded state feedback controllers of individual subsystems and a common Lyapunov function are explicitly constructed to asymptotically stabilize the closed‐loop system under arbitrary switchings. An example is given to show the effectiveness of the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
本文针对一类在任意切换信号作用下的切换非线性系统, 研究了其输出反馈周期事件触发控制问题. 所考 虑的非线性系统采用非严格反馈形式且含有未知时变控制系数. 在本文中, 仅利用采样时刻的系统输出. 为了估计 系统的不可量测的状态, 基于采样的系统输出构造了降维状态观测器. 为了减少通信资源的利用, 提出了一种新的 输出反馈周期事件触发策略, 该策略包含仅利用事件触发时刻的信息构造的输出反馈事件触发控制器以及仅在采 样时刻间歇性监测的离散事件触发机制. 通过选取可容许的采样周期及合适的公共Lyapunov函数, 证明了闭环系统 在任意切换下全局渐近稳定. 最后, 通过将本文中所给出的控制方案应用到数值算例中验证了其有效性.  相似文献   

13.
This paper studies the problem of global finite-time output feedback stabilisation for a class of switched high-order nonlinear systems under arbitrary switchings. Based on adding one power integrator technique, we design a common homogeneous controller to guarantee finite-time stability of the closed-loop switched nonlinear system. An example is given to illustrate the effectiveness of the proposed control scheme.  相似文献   

14.
We solve the problem of global uniform input-to-state stabilization with respect to external disturbance signals for a class of large-scale interconnected nonlinear switched systems. The overall system is composed of switched subsystems each of which has the nonlinear MIMO generalized triangular form, which (in contrast to strict-feedback form) has non-invertible input–output maps. The switching signal is an arbitrary unknown piecewise constant function and the feedback constructed does not depend on the switching signal.  相似文献   

15.
一类多输入级联非线性切换系统的全局镇定   总被引:2,自引:1,他引:1  
研究一类带有部分线性系统的多输入级联非线性切换系统的全局镇定问题. 首先, 给出保证线性部分有一致规范型的充分条件. 其次, 利用一致规范型及其零动态的共同二次Lyapunov函数设计状态反馈使得线性部分在任意切换律下镇定. 最后, 通过构造共同Lyapunov函数能实现闭环系统在任意切换律下的全局渐近稳定性.  相似文献   

16.
This paper presents a novel framework to asymptotically adaptively stabilize a class of switched nonlinear systems with constant linearly parameterized uncertainty. By exploiting the generalized multiple Lyapunov functions method and the recently developed immersion and invariance (I&I) technique, which does not invoke certainty equivalence, we design the error estimator, continuous state feedback controllers for subsystems, and a switching law to ensure boundedness of all closed‐loop signals and global asymptotical regulation of the states, where the solvability of the I&I adaptive stabilization problem for individual subsystems is not required. Then, along with the backstepping method, the proposed design technique is further applied to a class of switched nonlinear systems in strict‐feedback form with an unknown constant parameter so that the I&I adaptive stabilization controllers for the system is developed. Finally, simulation results are also provided to demonstrate the effectiveness of the proposed design method.  相似文献   

17.
This paper investigates the problem of robust controller design for output‐constrained and state‐constrained uncertain switched nonlinear systems. By using the idea of p‐times differentiable unbounded functions and the backstepping technique, a constructive method is proposed to design effective controllers such that the output of a class of uncertain switched nonlinear systems in lower triangular form can asymptotically track a constant reference signal without violation of the output tracking error constraint. Furthermore, the explored method is applied to the state‐constrained robust stabilization problem for a class of general uncertain switched nonlinear systems. Finally, a simulation example is provided to demonstrate the effectiveness of the developed results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The problem of global stabilization is investigated for a class of switched nonlinear feedforward systems in this paper where the solvability of the stabilization problem for individual subsystem is not assumed. Some sufficient condition for the stabilization problem to be solvable is derived for the first time by exploiting the multiple Lyapunov functions method and the forwarding technique. Also, we design a switching law and construct bounded state feedback controllers of subsystems explicitly by a recursive design algorithm to achieve global asymptotic stability. The provided technique permits removal of a common restriction in which all subsystems in switched nonlinear feedforward systems are globally asymptotically stable. Finally, a numerical example is provided to demonstrate the feasibility of the theoretical result. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the problem of continuous output‐feedback stabilization for a class of switched high‐order planar systems under arbitrary switchings. Based on the common Lyapunov function design method, by using the adding a power integrator technique and designing an implementable observer, a continuous output‐feedback controller is constructed such that the closed‐loop system is global stabilization and the output can be regulated to the origin. As an application, the developed strategy is utilized to the control design for the continuous stirred tank reactor with two modes feed stream. The simulation results verify the efficiency of the proposed design scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
一类离散时间切换系统鲁棒控制器设计   总被引:7,自引:0,他引:7  
考虑一类非线性离散时间切换系统的鲁棒二次镇定和渐近镇定问题.利用公共李亚普诺夫函数方法和多李亚普诺夫函数方法,分别设计了切换系统鲁棒状态反馈控制器和输出反馈控制器,保证了切换系统的二次稳定性和渐近稳定性.仿真结果验证了所提出算法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号