首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optimum profiles of right-angle-face anisotropically etched silicon surface-relief gratings illuminated at normal incidence for substrate-mode optical interconnects are determined for TE, TM, and random linear (RL) polarizations. A simulated annealing algorithm in conjunction with the rigorous coupled-wave analysis is used. The optimum diffraction efficiencies of the -1 forward-diffracted order are 37.3%, 67.1%, and 51.2% for TE-, TM-, and RL-polarization-optimized profiles, respectively. Also, the sensitivities to grating thickness, slant angle, and incident angle of the optimized profiles are presented.  相似文献   

2.
Maikisch JS  Gaylord TK 《Applied optics》2007,46(18):3674-3681
Using a combination of rigorous coupled-wave analysis and simulated annealing, parallel-face slanted surface-relief gratings (PFSSRGs) are optimized. For substrate-mode optical interconnects, profiles are presented for both polymer and silicon PFSSRGs for both TE and TM polarizations at normal incidence with grating periods designed to give a 45 degrees output angle in the negative-first forward-diffracted order. The resulting diffraction efficiencies range from 70% to 99%, with a majority of the optimized profiles yielding over 90%. Optimized polymer profiles for TE and TM polarizations exhibit similar high diffraction efficiencies, but the TM profiles generally require greater groove depths. Silicon profiles optimized for TM polarization have greater diffraction efficiencies than those for TE polarization. Profiles that can feasibly be fabricated are identified, and sensitivities to groove depth, filling factor, slant angle, and incident angle are shown to be modest.  相似文献   

3.
Lee C  Hane K  Kim W  Lee SK 《Applied optics》2008,47(18):3246-3253
We present the design of retrodiffraction gratings that utilize total internal reflection (TIR) in a lamellar configuration to achieve high performance for both TE and TM polarized light and polarization-sensitive performance for gratings behaving as polarizer filters; the design was based on rigorous coupled wave analysis (RCWA) and the Taguchi method. The components can thus be fabricated from a single dielectric material and do not have to be coated with a metallic or dielectric film layer to enhance the reflectance. The effects of the structural and optical parameters of lamellar gratings were investigated, and the TIR gratings in a lamellar configuration were structurally and optically optimized in terms of the signal-to-noise ratio (S/N) and a statistical analysis of variance (ANOVA) of the refractive index, grating period, filling factor, and grating depth as control factors and the estimated efficiency by RCWA as a noise factor. For more accurate robustness, a two-step optimization process was used for each purpose. For TIR gratings designed to perform similarly for TE and TM incident polarization, the -1st-order efficiencies were estimated to be up to 92.0% and 88.5% for TE and TM polarization, respectively. Also, for the TIR gratings designed to achieve polarization-sensitive performance when behaving as a polarizer filters, the -1st-order diffraction efficiencies for TE and TM polarization were estimated to be up to 95.5% and 2.7%, respectively. From these analysis results, it was confirmed that the Taguchi method shows feasibility for an optimization approach to a technique for designing optical devices.  相似文献   

4.
Efficiency measurements of a grazing-incidence diffraction grating in the off-plane mount were performed using polarized synchrotron radiation. The grating had 5000 grooves/mm, an effective blaze angle of 14 degrees, and was gold coated. The efficiencies in the two polarization orientations (TM and TE) were measured in the 1.5-5.0 nm wavelength range and were compared with the efficiencies calculated using the PCGrate-SX code. The TM and TE efficiencies differ, offering the possibility of performing unique science studies of astrophysical, solar, and laboratory sources by exploiting the polarization sensitivity of the off-plane grating.  相似文献   

5.
Krumbügel MA  Totzeck M 《Applied optics》1994,33(34):7864-7874
Amplitude and phase of diffraction near fields behind two-dimensional weak phase objects (n ? 1.02 + iO.0002) are measured with electromagnetic 3-cm waves in TM and TE polarization. Dielectric slabs and strips with a trapezoidal or rectangular cross section are considered (width 1.5λ-36.0λ; thickness 0.6λ-2.4λ; wedge angle 30°-150°). For numerical simulation of the measured fields, a modification of the first Born approximation for weak scatterers is developed, which yields a remarkably better agreement with the measurements but requires no higher numerical efforts than the first Born approximation. Procedures for the determination of width, thickness, and wedge angle of the objects from measured diffraction fields are presented.  相似文献   

6.
The total internal reflection (TIR) grating is an integrated optical diffraction grating designed to achieve high efficiency for the retrodiffracted order by use of total internal reflection twice within a groove of the grating rather than by use of metalized grooves. Numerical calculations are presented for both TE and TM polarizations of incident light. When the TIR grating was used in the -mth-order Littrow mount with m > 13, the diffraction efficiency was found to decrease linearly with 1/m. The polarization dependence of the retrodiffraction efficiency exceeds 3 dB for TIR gratings formed in silica glass (n = 1.5) but is very small for gratings with InP-based technology (n = 3.2).  相似文献   

7.
A Hu  C Zhou  H Cao  J Wu  J Yu  W Jia 《Applied optics》2012,51(20):4902-4906
A polarization-independent wideband mixed metal dielectric grating with high efficiency of the -1st order is analyzed and designed in Littrow mounting. The mixed metal dielectric grating consists of a rectangular-groove transmission dielectric grating on the top layer and a highly reflective mirror composed of a connecting layer and a metal film. Simplified modal analysis is carried out, and it shows that when the phase difference accumulated by the two propagating modes is odd multiples of π/2, the diffraction efficiency of the -1st order will be high. Selecting grating depth and duty cycle for satisfying the phase difference condition for both TE (electric field parallel to grooves) and TM (magnetic field parallel to grooves) polarizations, a polarization-independent high-efficiency grating can be designed. Using rigorous coupled-wave analysis and a simulated annealing algorithm, geometric parameters of the reflective grating are exactly obtained. The optimized grating for operation around a wavelength of 800 nm exhibits diffraction efficiencies higher than 90% for both TE and TM polarizations over a 120 nm wavelength bandwidth. The simplified modal analysis can be applied in other types of reflective gratings if the top layer is a dielectric transmission grating.  相似文献   

8.
Lu N  Kuang D  Mu G 《Applied optics》2008,47(21):3743-3750
The structure of transmission blazed binary gratings for optical limiting is designed with the form-birefringence theory. This kind of grating has subwavelength features, can imitate the transmission blazed grating effectively, and has higher efficiencies than a transmission blazed grating with a subwavelength structure. The diffraction efficiencies are calculated and analyzed. For the normal incident light with 10.6 microm wavelength, the transmissivities for the designed grating at 0 degrees deviation angle for TE and TM polarizations are 0.05% and 5.09%, respectively, which are basically identical to the results of the finite-difference time-domain method. The diffraction efficiencies of the first transmitted order for TE and TM polarizations are 93.95% and 83.88%, respectively.  相似文献   

9.
The effects of fabrication errors on the performance of collimating finite-thickness cylindrical diffractive lenses with eight discrete levels are investigated with a rigorous boundary-element method and a scalar approach. The photolithographic fabrication errors considered are mask alignment errors, exposure errors (that result in linewidth errors), and etch-depth errors. A cylindrical Gaussian beam of TE or TM polarization is incident upon the resulting lenses. Lenses of F/4, F/2, and F/1.4 are examined. The diffraction efficiencies of the lenses with fabrication errors are generally lower than the error-free lenses with the most severe performance degradation occurring for mask misalignment and exposure errors.  相似文献   

10.
An effective grating model, which generalizes effective-medium theory to the case of resonance domain surface-relief gratings, is presented. In addition to the zero order, it takes into account the first diffraction order, which obeys the Bragg condition. Modeling the surface-relief grating as an effective grating with two diffraction orders provides closed-form analytical relationships between efficiency and grating parameters. The aspect ratio, the grating period, and the required incidence angle that would lead to high diffraction efficiencies are predicted for TE and TM polarization and verified by rigorous numerical calculations.  相似文献   

11.
Fang Y  Tan Q  Zhang M  Jin G 《Applied optics》2012,51(12):2172-2177
A high-density dielectric rectangular grating is designed for color separation in a Fresnel diffraction field. The Fresnel field distribution is analyzed and the optimization conditions for color separation are given. The process of the modes propagating and energy exchanging with the diffraction orders are expressed by modal method. The color separation for different polarizations can be realized. The energy efficiency is 96.3% at the 633 nm wavelength and 86.9% at the 488 mm wavelength for both TE polarizations, while the energy efficiency is theoretically 96.3% at the 633 nm wavelength for TE polarization and 90.6% at the 488 nm wavelength for TM polarization. The field distributions are scanned by the near-field scanning optical microscopy, and the efficiency is 71.2% for the 633 nm wavelength and 67.3% for the 488 nm wavelength for both TE polarizations experimentally.  相似文献   

12.
The effects of finite number of periods (FNP) and finite incident beams on the diffraction efficiencies of holographic gratings are investigated by the finite-difference frequency-domain (FDFD) method. Gratings comprising 20, 15, 10, 5, and 3 periods illuminated by TE and TM incident light with various beam sizes are analyzed with the FDFD method and compared with the rigorous coupled-wave analysis (RCWA). Both unslanted and slanted gratings are treated in transmission as well as in reflection configurations. In general, the effect of the FNP is a decrease in the diffraction efficiency with a decrease in the number of periods of the grating. Similarly, a decrease in incident-beam width causes a decrease in the diffraction efficiency. Exceptions appear in off-Bragg incidence in which a smaller beam width could result in higher diffraction efficiency. For beam widths greater than 10 grating periods and for gratings with more than 20 periods in width, the diffraction efficiencies slowly converge to the values predicted by the RCWA (infinite incident beam and infinite-number-of-periods grating) for both TE and TM polarizations. Furthermore, the effects of FNP holographic gratings on their diffraction performance are found to be comparable to their counterparts of FNP surface-relief gratings.  相似文献   

13.
Polarization-dependent Talbot effect   总被引:1,自引:0,他引:1  
The term "polarization-dependent Talbot effect" means that the Talbot self-imaging intensity of a high-density grating is different for TE and TM polarization modes. Numerical simulations with the finite-difference time-domain method show that the polarization dependence of the Talbot images is obvious for gratings with period d between 2 lambda and 3 lambda. Such a polarization-dependent difference for TE and TM polarization of a high-density grating of 630 lines/mm (corresponding to d/lambda=2.5) is verified through experiments with the scanning near-field optical microscopy technique, in which a He-Ne laser is used as its polarization is changed from the TE mode to the TM mode. The polarization-dependent Talbot effect should help us to understand more clearly the diffraction behavior of a high-density grating in nano-optics and contribute to wide application of the Talbot effect.  相似文献   

14.
Schilling A  Herzig HP 《Applied optics》2000,39(29):5273-5279
We analyzed the direct sampling (DS) method for diffractive lens encoding, using exact electromagnetic diffraction theory. In addition to previously published research [Pure Appl. Opt. 7, 565 (1998)] we present what we believe to be new results for TM polarization. We found that the validity of the scalar-based DS method is even more extended for TM than for TE polarization. Additionally, we fabricated and characterized DS-encoded blazed gratings and found good agreement between the experimental and theoretical diffraction efficiencies. We analyzed quantitatively the influence of the encoding schemes DS and analytic quantization (AQ) on the quality of the focal spot. We also investigated the focal spot sizes (FWHM) and the Strehl ratios of the DS- and the AQ-encoded cylindrical lenses.  相似文献   

15.
《Journal of Modern Optics》2013,60(8):1719-1732
The rigorous boundary matching technique was used to analyse the far-field diffraction from wavelength-sized surface relief gratings for TE polarization. Diffraction characteristics of such surface relief gratings were studied as functions of complex refractive index, groove depth and the angle of incidence. The surface field at the bottom of the grooves is more severely influenced by the edges and walls for metallic material than dielectric ones. The reflectivities of gold gratings show significant fluctuation for different incident wavelengths. This can be clearly seen from the fact that the zeroth-order diffraction efficiency DE 0 of gold is lower than that of aluminium at u = 0·4 wm but higher at u = 1·0 wm. It is also shown that the depth of the grooves has significant influences on the diffraction efficiencies, an optimum depth can be chosen to minimize the specular component. However, this optimum depth value is found to be different for the gratings of different materials, e.g. aluminium and gold, although the gratings have exactly the same size and shape. The effect of the incident angle, particularly at critical angles when certain diffracted waves are just about to be cut off was discussed. The zeroth-order diffraction efficiencies are found to change noticeably at the critical angles.  相似文献   

16.
Cao H  Zhou C  Feng J  Ma J 《Applied optics》2011,50(17):2732-2737
A nondestructive method for measuring the duty cycles of metal grating masks formed on top of dielectric substrates is proposed. For a near-normal angle of incidence, the zeroth diffracted order transmission efficiency curves for both TE and TM polarized probe lights, as a function of duty cycles, behave linearly in the duty cycle ranging from 0 to 1. By comparing the measured efficiencies, or the ratio of zeroth-order transmission efficiency for TM polarization to that for TE polarization, with that of the rigorous-coupled wave analysis (RCWA) method for a fixed grating period and depth, one can determine the duty cycle of the grating. By selecting the probe light appropriately, the measurement errors originating from deviations of the incident angle and grating depth can be negligible. This method is applicable for all metal gratings, which are not easy to measure nondestructively due to fine grooves smaller than the wavelength. This method is simple, accurate, nondestructive, and low-cost. The results of experimental verification are presented and show excellent agreement with scanning electron microscope images.  相似文献   

17.
Two holographic diffraction gratings with very similar parameters, designed for maximum performance inTM polarization, are investigated, their diffraction efficiency measured, an electron microscopic picture of their surface observed, and numerical simulation of light diffraction done with the surface roughness taken into account. It is demonstrated numerically that a small-scale roughness imposed on the grating surface could increase significantly both scattering and absorption from the surface, this influence being greater in the TM case. A very good coincidence between the numerical and experimental data is obtained in TE polarization, whereas in TM polarization only a qualitative agreement exists.  相似文献   

18.
We describe the change of the spatial distribution of the state of polarization occurring during two-dimensional (2D) imaging through a multilayer and in particular through a layered metallic flat lens. Linear or circular polarization of incident light is not preserved due to the difference in the amplitude transfer functions for the TM and TE polarizations. In effect, the transfer function and the point spread function (PSF) that characterize 2D imaging through a multilayer both have a matrix form, and cross-polarization coupling is observed for spatially modulated beams with a linear or circular incident polarization. The PSF in a matrix form is used to characterize the resolution of the superlens for different polarization states. We demonstrate how the 2D PSF may be used to design a simple diffractive nanoelement consisting of two radial slits. The structure assures the separation of nondiffracting radial beams originating from two slits in the mask and exhibits an interesting property of a backward power flow in between the two rings.  相似文献   

19.
Abstract

A binary three-port reflective grating under second Bragg angle incidence is designed in this paper. Under second Bragg angle incidence, the grating can separate nearly 33% light wave energy into the 2nd order, the 1st order and the 0th diffractive orders, respectively. Rigorous coupled-wave analysis can give numerical calculation to optimize the three-port grating depths and periods. For the optimized reflective three-port grating, TE polarization and TM polarization can have different values of grating depth and period. Compared with the reported three-port binary grating under Bragg angle incidence, the diffraction efficiencies can be improved. Moreover, the modal method is applied to explain the propagating mechanism. The highly efficient three-port binary reflective grating under second Bragg angle incidence would be manufactured in the emerging industry for its novel performance.  相似文献   

20.
The total-field-scattered-field formulation of the finite-difference time-domain method (FDTD) is used to analyze the diffraction of finite incident beams by finite-number-of-periods holographic and surface-relief gratings. Both second-order and fourth-order FDTD formulations are used with various averaging schemes to treat permittivity discontinuities and a comparative study is made with alternative numerical methods. The diffraction efficiencies for gratings of several periods and various beam sizes, for both TE and TM polarization cases, are calculated and the FDTD results are compared with the finite-difference frequency-domain (FDFD) method results in the case of holographic gratings, and with the boundary element method results in the case of surface-relief gratings. Furthermore, the convergence of the FDTD results to the rigorous coupled-wave analysis results is investigated as the number of grating periods and the incident beam size increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号