首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this paper a Galerkin least-squares (GLS) finite element method, in which residuals in least-squares form are added to the standard Galerkin variational equation, is developed to solve the Helmholtz equation in two dimensions. An important feature of GLS methods is the introduction of a local mesh parameter that may be designed to provide accurate solutions with relatively coarse meshes. Previous work has accomplished this for the one-dimensional Helmholtz equation using dispersion analysis. In this paper, the selection of the GLS mesh parameter for two dimensions is considered, and leads to elements that exhibit improved phase accuracy. For any given direction of wave propagation, an optimal GLS mesh parameter is determined using two-dimensional Fourier analysis. In general problems, the direction of wave propagation will not be known a priori. In this case, an optimal GLS parameter is found which reduces phase error for all possible wave vector orientations over elements. The optimal GLS parameters are derived for both consistent and lumped mass approximations. Several numerical examples are given and the results compared with those obtained from the Galerkin method. The extension of GLS to higher-order quadratic interpolations is also presented.  相似文献   

2.
This paper proposes a new stabilized finite element method to solve singular diffusion problems described by the modified Helmholtz operator. The Galerkin method is known to produce spurious oscillations for low diffusion and various alternatives were proposed to improve the accuracy of the solution. The mostly used methods are the well‐known Galerkin least squares and Galerkin gradient least squares (GGLS). The GGLS method yields the exact nodal solution in the one‐dimensional case and for a uniform mesh. However, the behavior of the method deteriorates slightly in the multi‐dimensional case and for non‐uniform meshes. In this work we propose a new stabilized finite element method that leads to improved accuracy for multi‐dimensional problems. For the one‐dimensional case, the new method leads to the same results as the GGLS method and hence provides exact nodal solutions to the problem on uniform meshes. The proposed method is a Galerkin discretization used to solve a modified equation that includes a term depending on the gradient of the original partial differential equation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
This article concerns stabilized finite element approximations for flow-type sensitive fluid flows. A quasi-Newtonian model, based on a kinematic parameter of flow classification and shear and extensional viscosities, is used to represent the fluid behavior from pure shear up to pure extension. The flow governing equations are approximated by a multi-field Galerkin least-squares (GLS) method, in terms of strain rate, pressure and velocity (D-p-u). This method, which may be viewed as an extension of the formulation for constant viscosity fluids introduced by Behr et al. (Comput Methods Appl Mech 104:31–48, 1993), allows the use of combinations of simple Lagrangian finite element interpolations. Mild Weissenberg flows of quasi-Newtonian fluids—using Carreau viscosities with power-law indexes varying from 0.2 to 2.5—are carried out through a four-to-one planar contraction. The performed physical analysis reveals that the GLS method provides a suitable approximation for the problem and the results are in accordance with the related literature.  相似文献   

4.
A Galerkin/least‐squares (GLS) finite element formulation for problem of consolidation of fully saturated two‐phase media is presented. The elimination of spurious pressure oscillations appearing at the early stage of consolidation for standard Galerkin finite elements with equal interpolation order for both displacements and pressures is the goal of the approach. It will be shown that the least‐squares term, based exclusively on the residuum of the fluid flow continuity equation, added to the standard Galerkin formulation enhances its stability and can fully eliminate pressure oscillations. A reasonably simple framework designed for derivation of one‐dimensional as well as multi‐dimensional estimates of the stabilization factor is proposed and then verified. The formulation is validated on one‐dimensional and then on two‐dimensional, linear and non‐linear test problems. The effect of the fluid incompressibility as well as compressibility will be taken into account and investigated. Copyright © 2001 John Wiley & Sons Ltd.  相似文献   

5.
In this paper, the moving least-squares (MLS) approximation and the interpolating moving least-squares (IMLS) method proposed by Lancaster are discussed first. A new method for deriving the MLS approximation is presented, and the IMLS method is improved. Compared with the IMLS method proposed by Lancaster, the shape function of the improved IMLS method in this paper is simpler so that the new method has higher computing efficiency. Then combining the shape function of the improved IMLS method with Galerkin weak form of the potential problem, the interpolating element-free Galerkin (IEFG) method for the two- dimensional potential problem is presented, and the corresponding formulae are obtained. Compared with the conventional element-free Galerkin (EFG) method, the boundary conditions can be applied directly in the IEFG method, which makes the computing efficiency higher. For the purposes of demonstration, some selected numerical examples are solved using the IEFG method.  相似文献   

6.
We consider finite element methods for the Darcy equations that are designed to work with standard, low order C 0 finite element spaces. Such spaces remain a popular choice in the engineering practice because they offer the convenience of simple and uniform data structures and reasonable accuracy. A consistently stabilized method [20] and a least-squares formulation [18] are compared with two new stabilized methods. The first one is an extension of a recently proposed polynomial pressure projection stabilization of the Stokes equations [5,13]. The second one is a weighted average of a mixed and a Galerkin principles for the Darcy problem, and can be viewed as a consistent version of the classical penalty stabilization for the Stokes equations [8]. Our main conclusion is that polynomial pressure projection stabilization is a viable stabilization choice for low order C 0 approximations of the Darcy problem.  相似文献   

7.
The potential problem is one of the most important partial differential equations in engineering mathematics. A potential problem is a function that satisfies a given partial differential equation and particular boundary conditions. It is independent of time and involves only space coordinates, as in Poisson’s equation or the Laplace equation with Dirichlet, Neumann, or mixed conditions. When potential problems are very complex, both in their field variable variation and boundary conditions, they usually cannot be solved by analytical solutions. The element-free Galerkin (EFG) method is a promising method for solving partial differential equations on which the trial and test functions employed in the discretization process result from moving least-squares (MLS) interpolants. In this paper, by employing improved moving least-squares (IMLS) approximation, we derive the formulas for an improved element-free Galerkin (IEFG) method for three-dimensional potential problems. Because there are fewer coefficients in the IMLS approximation than in the MLS approximation, and in the IEFG method, fewer nodes are selected in the entire domain than in the conventional EFG method, the IEFG method should result in a higher computing speed.  相似文献   

8.
In this paper, we derive an improved element-free Galerkin (IEFG) method for two-dimensional linear elastodynamics by employing the improved moving least-squares (IMLS) approximation. In comparison with the conventional moving least-squares (MLS) approximation function, the algebraic equation system in IMLS approximation is well-conditioned. It can be solved without having to derive the inverse matrix. Thus the IEFG method may result in a higher computing speed. In the IEFG method for two-dimensional linear elastodynamics, we employed the Galerkin weak form to derive the discretized system equations, and the Newmark time integration method for the time history analyses. In the modeling process, the penalty method is used to impose the essential boundary conditions to obtain the corresponding formulae of the IEFG method for two-dimensional elastodynamics. The numerical studies illustrated that the IEFG method is efficient by comparing it with the analytical method and the finite element method.  相似文献   

9.
Stabilized stress‐point integration schemes based on gradient stabilization and dilatational stabilization methods are presented for linear elastostaticity problems in the framework of element‐free Galerkin (EFG) method. The instability in stress fields associated with the stress‐point integration is treated by the addition to the Galerkin weak form of stabilization terms which contain product of the gradient of the residual or the trace of the gradient of the residual; the latter is called dilatational stabilization. Numerical results show that the oscillations in the stress fields are successfully removed by the presented stabilization methods, and that the convergence and stability properties of direct stress‐point integration are greatly improved. These stabilization methods are particularly suitable for the solution of non‐linear continua with explicit time integration methods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper we present a mixed stabilized finite element formulation that does not lock and also does not exhibit unphysical oscillations near the incompressible limit. The new mixed formulation is based on a multiscale variational principle and is presented in two different forms. In the first form the displacement field is decomposed into two scales, coarse-scale and fine-scale, and the fine-scale variables are eliminated at the element level by the static condensation technique. The second form is obtained by simplifying the first form, and eliminating the fine-scale variables analytically yet retaining their effect that results with additional (stabilization) terms. We also derive, in a consistent manner, an expression for the stabilization parameter. This derivation also proves the equivalence between the classical mixed formulation with bubbles and the Galerkin least-squares type formulations for the equations of linear elasticity. We also compare the performance of this new mixed stabilized formulation with other popular finite element formulations by performing numerical simulations on three well known test problems.  相似文献   

11.
Time finite element methods are developed for the equations of structural dynamics. The approach employs the time-discontinuous Galerkin method and incorporates stabilizing terms having least-squares form. These enable a general convergence theorem to be proved in a norm stronger than the energy norm. Results are presented from finite difference analyses of the time-discontinuous Galerkin and least-squares methods with various temporal interpolations and commonly used finite difference methods for structural dynamics. These results show that, for particular interpolations, the time finite element method exhibits improved accuracy and stability.  相似文献   

12.
Meshless Galerkin least-squares method   总被引:1,自引:0,他引:1  
Collocation method and Galerkin method have been dominant in the existing meshless methods. Galerkin-based meshless methods are computational intensive, whereas collocation-based meshless methods suffer from instability. A new efficient meshless method, meshless Galerkin lest-squares method (MGLS), is proposed in this paper to combine the advantages of Galerkin method and collocation method. The problem domain is divided into two subdomains, the interior domain and boundary domain. Galerkin method is applied in the boundary domain, whereas the least-squares method is applied in the interior domain.The proposed scheme elliminates the posibilities of spurious solutions as that in the least-square method if an incorrect boundary conditions are used. To investigate the accuracy and efficiency of the proposed method, a cantilevered beam and an infinite plate with a central circular hole are analyzed in detail and numerical results are compared with those obtained by Galerkin-based meshless method (GBMM), collocation-based meshless method (CBMM) and meshless weighted least squares method (MWLS). Numerical studies show that the accuracy of the proposed MGLS is much higher than that of CBMM and is close to, even better than, that of GBMM, while the computational cost is much less than that of GBMM.Acknowledgements The authors gratefully acknowledge the support of the National Natural Science Foundation of China with grant number 10172052.  相似文献   

13.
Domain integration by Gauss quadrature in the Galerkin mesh‐free methods adds considerable complexity to solution procedures. Direct nodal integration, on the other hand, leads to a numerical instability due to under integration and vanishing derivatives of shape functions at the nodes. A strain smoothing stabilization for nodal integration is proposed to eliminate spatial instability in nodal integration. For convergence, an integration constraint (IC) is introduced as a necessary condition for a linear exactness in the mesh‐free Galerkin approximation. The gradient matrix of strain smoothing is shown to satisfy IC using a divergence theorem. No numerical control parameter is involved in the proposed strain smoothing stabilization. The numerical results show that the accuracy and convergent rates in the mesh‐free method with a direct nodal integration are improved considerably by the proposed stabilized conforming nodal integration method. It is also demonstrated that the Gauss integration method fails to meet IC in mesh‐free discretization. For this reason the proposed method provides even better accuracy than Gauss integration for Galerkin mesh‐free method as presented in several numerical examples. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
The element-free Galerkin (EFG) method is a promising method for solving partial differential equations in which trial and test functions employed in the discretization process result from moving least-squares (MLS) approximation. In this paper, by employing the improved moving least-squares (IMLS) approximation, we derive formulae for an improved element-free Galerkin (IEFG) method for the modified equal width (MEW) wave equation. A variation of the method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Because there are fewer coefficients in the IMLS approximation than in the MLS approximation and in the IEFG method, fewer nodes are selected in the entire domain than in the conventional EFG method. Therefore, the IEFG method may result a better computing speed. In this paper, the effectiveness of the IEFG method for modified equal width (MEW) wave equation is investigated by numerical examples.  相似文献   

15.
针对传统有限元法求解Oldroyd-B本构方程时需加入稳定化方案的缺点,本文基于非结构网格给出了统一间断有限元求解框架.该框架包含采用IPDG(interior penalty discontinuous Galerkin)求解质量方程和动量方程,与采用RKDG(RungeKutta discontinuous Galerkin)求解本构方程这两个核心.数值结果表明:该方法在求解Oldroyd-B本构方程时无需加入稳定化方案,实施比有限元法简便,且具有较高的计算精度,可有效地模拟包含应力奇异点的复杂粘弹流动问题,进而揭示非牛顿粘弹流动的基本特征.  相似文献   

16.
A stabilized equal‐order velocity–pressure finite element algorithm is presented for the analysis of flow in porous media and in the solidification of binary alloys. The adopted governing macroscopic conservation equations of momentum, energy and species transport are derived from their microscopic counterparts using the volume‐averaging method. The analysis is performed in a single domain with a fixed numerical grid. The fluid flow scheme developed includes SUPG (streamline‐upwind/Petrov–Galerkin), PSPG (pressure stabilizing/Petrov–Galerkin) and DSPG (Darcy stabilizing/Petrov–Galerkin) stabilization terms in a variable porosity medium. For the energy and species equations a classical SUPG‐based finite element method is employed. The developed algorithms were tested extensively with bilinear elements and were shown to perform stably and with nearly quadratic convergence in high Rayleigh number flows in varying porosity media. Examples are shown in natural and double diffusive convection in porous media and in the directional solidification of a binary‐alloy. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Using the complex variable moving least-squares (CVMLS) approximation, a complex variable element-free Galerkin (CVEFG) method for two-dimensional elastoplastic large deformation problems is presented. This meshless method has higher computational precision and efficiency because in the CVMLS approximation, the trial function of a two-dimensional problem is formed with a one-dimensional basis function. For two-dimensional elastoplastic large deformation problems, the Galerkin weak form is employed to obtain its equation system. The penalty method is used to impose essential boundary conditions. Then the corresponding formulae of the CVEFG method for two-dimensional elastoplastic large deformation problems are derived. In comparison with the conventional EFG method, our study shows that the CVEFG method has higher precision and efficiency. For illustration purpose, a few selected numerical examples are presented to demonstrate the advantages of the CVEFG method.  相似文献   

18.
A computationally efficient numerical model that describes carbon sequestration in deep saline aquifers is presented. The model is based on the multiphase flow and vertically averaged mass balance equations, requiring the solution of two partial differential equations – a pressure equation and a saturation equation. The saturation equation is a nonlinear advective equation for which the application of Galerkin finite element method (FEM) can lead to non‐physical oscillations in the solution. In this article, we extend three stabilized FEM formulations, which were developed for uncoupled systems, to the governing nonlinear coupled PDEs. The methods developed are based on the streamline upwind, the streamline upwind/Petrov–Galerkin and the least squares FEM. Two sequential solution schemes are developed: a single step and a predictor–corrector. The range of Courant numbers yielding smooth and oscillation‐free solutions is investigated for each method. The useful range of Courant numbers found depends upon both the sequential scheme (single step vs predictor–corrector) and also the time integration method used (forward Euler, backward Euler or Crank–Nicolson). For complex problems such as when two plumes meet, only the SU stabilization with an amplified stabilization parameter gives satisfactory results when large time steps are used. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The element-free Galerkin method for dynamic crack propagation is described and applied to several problems. This method is a gridless method, which facilitates the modelling of growing crack problems because it does not require remeshing; the growth of the crack is modelled by extending its surfaces. The essential feature of the method is the use of moving least-squares interpolants for the trial-and-test functions. In these interpolants, the dependent variable is obtained at any point by minimizing a weighted quadratic form involving the nodal variables within a small domain surrounding the point. The discrete equations are obtained by a Galerkin method. The procedures for modelling dynamic crack propagation based on dynamic stress intensity factors are also described.  相似文献   

20.
The Galerkin boundary node method (GBNM) is a boundary-type meshless method that combines a variational form of boundary integral formulations for governing equations with the moving least-squares approximations for generation of the trial and test functions. In this paper, a posteriori error estimate and an effective adaptive h-refinement procedure are developed in conjunction with the GBNM. The error estimator is based on the difference between numerical solutions obtained using two successive nodal arrangements. The reliability and efficiency of this error estimator and the convergence of this adaptive meshless scheme are verified theoretically. Numerical examples are also given to show the efficiency of the adaptive methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号